@article{VNGU_2014_14_3_a0,
author = {E. Kh. Gimadi and A. M. Istomin and I. A. Rykov},
title = {On {2-Capacitated} {Peripatetic} {Salesman} {Problem} with {Different} {Weight} {Functions}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {3--18},
year = {2014},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a0/}
}
TY - JOUR AU - E. Kh. Gimadi AU - A. M. Istomin AU - I. A. Rykov TI - On 2-Capacitated Peripatetic Salesman Problem with Different Weight Functions JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2014 SP - 3 EP - 18 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a0/ LA - ru ID - VNGU_2014_14_3_a0 ER -
%0 Journal Article %A E. Kh. Gimadi %A A. M. Istomin %A I. A. Rykov %T On 2-Capacitated Peripatetic Salesman Problem with Different Weight Functions %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2014 %P 3-18 %V 14 %N 3 %U http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a0/ %G ru %F VNGU_2014_14_3_a0
E. Kh. Gimadi; A. M. Istomin; I. A. Rykov. On 2-Capacitated Peripatetic Salesman Problem with Different Weight Functions. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 3, pp. 3-18. http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a0/
[1] Garey M. R., Johnson D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and Co., San Francisco, 1979
[2] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys (eds.), The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, Wiley, Chichester, 1985
[3] G. Gutin, A. P. Punnen (eds.), The Traveling Salesman Problem and its Variations, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002
[4] Krarup J., “The Peripatetic Salesman and Some Related Unsolved Problems”, Combinatorial Programming: Methods and Applications, Proc. NATO Adv. Study Inst. (Versailles, 1974), 1975, 173–178
[5] De Kort J. B. J. M., “A Branch and Bound Algorithm for Symmetric 2-Peripatetic Salesman Problems”, European J. of Oper. Res., 10:2 (1993), 229–243 | DOI
[6] Duchenne É., Laporte G., Semet F., “The Undirected $m$-Capacitated Peripatetic Salesman Problem”, European J. of Oper. Res., 223:3 (2012), 637–643 | DOI
[7] Gimadi E. Kh., Istomin A. M., Rykov I. A., “On $m$-capacitated peripatetic salesman problem”, Diskretn. Anal. Issled. Oper., 20:5 (2013), 13–30 (in Russian)
[8] Papadimitriu C. H., Yannakakis M., “The Travelling Salesman Problem with Distance One and Two”, Math. Oper. Res., 18:1 (1993), 1–11 | DOI
[9] Gimadi E. Kh., Ivonina E. V., “Approximation algorithms for maximum-weight problem of two-peripatetic salesmen”, Diskretn. Anal. Issled. Oper., 19:1 (2012), 17–32 (in Russian)
[10] Ageev A. A., Baburin A. E., Gimadi E. Kh., “A polynomial algorithm with an accuracy estimate of 3/4 for finding two nonintersecting Hamiltonian cycles of maximum weight”, Diskretn. Anal. Issled. Oper. Ser. 1, 13:2 (2006), 11–20 (in Russian)
[11] Glebov A. N., Zambalayeva D. Zh., “Polynomial algorithm with approximation ratio 7/9 for maximum 2-PSP”, Diskretn. Anal. Issled. Oper., 18:4 (2011), 17–48 (in Russian)
[12] Baburin A. E., Gimadi E. Kh., Korkishko N. M., “Approximate algorithms for finding two edge-disjoint Hamiltonian cycles of minimal weight”, Diskretn. Anal. Issled. Oper. Ser. 2, 11:1 (2004), 11–25 (in Russian)
[13] Ageev A. A., Pyatkin A. V., “A 2-approximation algorithm for the metric 2-peripatetic salesman problem”, Diskretn. Anal. Issled. Oper., 16:4 (2009), 3–20 (in Russian)
[14] Della Croce F., Paschos V. Th., Wolfler Calvo R., “Approximating the 2-Peripatetic Traveling Salesman Problem”, 7$^\mathrm{th}$ Workshop on Modeling and Algorithms for Planning and Scheduling Problems, MAPSP 2005 (Siena, Italy, June 6–10, 2005), Springer, Berlin, 2005, 114–116
[15] Gimadi E. Kh., Glazkov Yu. V., Glebov A. N., “Approximation algorithms for solving the 2-peripatetic salesman problem on a complete graph with edge weights 1 and 2”, Diskretn. Anal. Issled. Oper. Ser. 2, 14:2 (2007), 41–60 (in Russian)
[16] Glebov A. N., Gordeeva A. V., Zambalayeva D. Zh., “7/5-approximation algorithm for 2-PSP on minimum with different weight functions”, Sib. Elektron. Mat. Izv., 8 (2011), 296–309 (in Russian)
[17] Glebov A. N., Zambalayeva D. Zh., “An approximation algorithm for the minimum 2-PSP with different weight functions valued 1 and 2”, Diskretn. Anal. Issled. Oper., 18:5 (2011), 11–37 (in Russian)