On Properties of Solutions to a System of Ordinary Differential Equations of Higher Dimension
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 2, pp. 88-97

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we consider a class of systems of nonlinear differential equations of higher dimension. We study some properties of solutions and prove that, for sufficiently large number of equations in the system, the last component of the solution can be approximated by a solution to a delay differential equation.
Keywords: system of ordinary differential equations of higher dimension, delay differential equation, limit theorem.
@article{VNGU_2014_14_2_a8,
     author = {I. A. Uvarova},
     title = {On {Properties} of {Solutions} to a {System} of {Ordinary} {Differential} {Equations} of {Higher} {Dimension}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {88--97},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a8/}
}
TY  - JOUR
AU  - I. A. Uvarova
TI  - On Properties of Solutions to a System of Ordinary Differential Equations of Higher Dimension
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2014
SP  - 88
EP  - 97
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a8/
LA  - ru
ID  - VNGU_2014_14_2_a8
ER  - 
%0 Journal Article
%A I. A. Uvarova
%T On Properties of Solutions to a System of Ordinary Differential Equations of Higher Dimension
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2014
%P 88-97
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a8/
%G ru
%F VNGU_2014_14_2_a8
I. A. Uvarova. On Properties of Solutions to a System of Ordinary Differential Equations of Higher Dimension. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 2, pp. 88-97. http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a8/