On Properties of Solutions to a System of Ordinary Differential Equations of Higher Dimension
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 2, pp. 88-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we consider a class of systems of nonlinear differential equations of higher dimension. We study some properties of solutions and prove that, for sufficiently large number of equations in the system, the last component of the solution can be approximated by a solution to a delay differential equation.
Keywords: system of ordinary differential equations of higher dimension, delay differential equation, limit theorem.
@article{VNGU_2014_14_2_a8,
     author = {I. A. Uvarova},
     title = {On {Properties} of {Solutions} to a {System} of {Ordinary} {Differential} {Equations} of {Higher} {Dimension}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {88--97},
     year = {2014},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a8/}
}
TY  - JOUR
AU  - I. A. Uvarova
TI  - On Properties of Solutions to a System of Ordinary Differential Equations of Higher Dimension
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2014
SP  - 88
EP  - 97
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a8/
LA  - ru
ID  - VNGU_2014_14_2_a8
ER  - 
%0 Journal Article
%A I. A. Uvarova
%T On Properties of Solutions to a System of Ordinary Differential Equations of Higher Dimension
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2014
%P 88-97
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a8/
%G ru
%F VNGU_2014_14_2_a8
I. A. Uvarova. On Properties of Solutions to a System of Ordinary Differential Equations of Higher Dimension. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 2, pp. 88-97. http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a8/

[1] Likhoshvai V. A., Fadeev S. I., Demidenko G. V., Matushkin Yu. G., “Modeling multistage synthesis without branching by a delay equation”, Sibirsk. Zh. Industr. Mat., 7:1 (2004), 73–94 (in Russian) | MR

[2] Demidenko G. V., Kolchanov N. A., Likhoshvai V. A., Matushkin Yu. G., Fadeev S. I., “Mathematical modeling of regulatory circuits of gene networks”, Comput. Math. Math. Phys., 44:12 (2004), 2166–2183 | MR | Zbl

[3] Demidenko G. V., Likhoshvai V. A., Kotova T. V., Khropova Yu. E., “On one class of systems of differential equations and on retarded equations”, Sib. Math. J., 47:1 (2006), 45–54 | DOI | MR | Zbl

[4] Demidenko G. V., “Systems of differential equations of higher dimension and delay equations”, Sib. Math. J., 53:6 (2012), 1021–1028 | DOI | MR | Zbl

[5] Demidenko G. V., “On classes of systems of differential equations of higher dimension and delay equations”, Itogi Nauki. Yug Rossii, Ser. Mat. Forum, 5, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2011, 45–56 (in Russian) | MR

[6] Krasovskii N. N., “The approximation of a problem of analytic design of controls in a system with time-lag”, J. Appl. Math. Mech., 28:4 (1964), 876–885 | DOI | MR | Zbl

[7] Repin Yu. M., “On the approximate replacement of systems with lag by ordinary dynamical systems”, J. Appl. Math. Mech., 29:2 (1965), 254–264 | DOI | MR | Zbl

[8] Györi I., “Two Approximation Techniques for Functional Differential Equations”, Comput. Math. Appl., 16:3 (1988), 195–214 | DOI | MR | Zbl

[9] Kraszanai B., Györi I., Pituk M., “The Modified Chain Method for a Class of Delay Differential Equations Arising in Neural Networks”, Math. Comput. Modelling, 51:5–6 (2010), 452–460 | DOI | MR

[10] Ilika S. A., Cherevko I. M., “Approximation of Nonlinear Differential Functional Equations”, J. Math. Sci., 190:5 (2013), 669–682 | DOI | MR

[11] Uvarova I. A., “On properties of solutions to one class of systems of nonlinear differential equations of higher dimension”, Differential Equations. Functional Spaces. Approximation Theory, Int. Conf. dedicated to the $105^\text{th}$ anniversary of the birthday of S. L. Sobolev, Abstracts (August 18–24, 2013, Novosibirsk, Russia), Sobolev Inst. Math., Novosibirsk, 2013, 272 (in Russian)

[12] Hartman Ph., Ordinary Differential Equations, Wiley, N.Y., 1964 | MR | MR | Zbl

[13] Demidenko G. V., Mel'nik I. A., “On a method of approximation of solutions to delay differential equations”, Sib. Math. J., 51:3 (2010), 419–434 | DOI | MR | Zbl

[14] Demidenko G. V., Kotova T. V., “Limit Properties of Solutions to One Class of Systems of Differential Equations with Parameters”, J. Anal. Appl., 8:2 (2010), 63–74 | MR | Zbl

[15] Matveeva I. I., Mel'nik I. A., “On the properties of solutions to a class of nonlinear systems of differential equations of large dimension”, Sib. Math. J., 53:2 (2012), 248–258 | DOI | MR | Zbl