Non-Local by Time Boundary Value Problems for Degenerate Equations Sobolev Type
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 2, pp. 49-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper deals with solvability of non-local by time boundary value problem for degenerate equations of Sobolev type with an elliptic-parabolic operator of the second order derivative by time. We prove existence theorems and uniqueness of regular solutions of this problem.
Keywords: the first boundary value problem, non-local problems equations of Sobolev type, regular solutions, a priori estimate.
@article{VNGU_2014_14_2_a5,
     author = {N. R. Pinigina},
     title = {Non-Local by {Time} {Boundary} {Value} {Problems} for {Degenerate} {Equations} {Sobolev} {Type}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {49--62},
     year = {2014},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a5/}
}
TY  - JOUR
AU  - N. R. Pinigina
TI  - Non-Local by Time Boundary Value Problems for Degenerate Equations Sobolev Type
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2014
SP  - 49
EP  - 62
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a5/
LA  - ru
ID  - VNGU_2014_14_2_a5
ER  - 
%0 Journal Article
%A N. R. Pinigina
%T Non-Local by Time Boundary Value Problems for Degenerate Equations Sobolev Type
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2014
%P 49-62
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a5/
%G ru
%F VNGU_2014_14_2_a5
N. R. Pinigina. Non-Local by Time Boundary Value Problems for Degenerate Equations Sobolev Type. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 2, pp. 49-62. http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a5/

[1] Kozhanov A. I., Comparison Theorems and Solvability of Boundary Value Problems for Some Classes of Evolution Equations of Pseudoparabolic and Pseudohyperbolic Type, Preprint, No 17, Novosibirsk, 1990

[2] Kozhanov A. I., “Certian Classes of Degenerate Sobolev–Galpern Equation”, Siberian Adv. Math., 4:1 (1994), 65–94 | MR | Zbl

[3] A. I. Kozhanov, “Parabolic equations with nonlocal nonlinear source”, Sib. Mat. J., 35:5 (1994), 945–956 | DOI | MR | Zbl

[4] N. R. Pinigina, “The boundary-value problem for degenerate ultraparabolic equations of the Sobolev type”, Rus. Math., 56:4 (2012), 54–61 | DOI | MR | MR | Zbl

[5] N. R. Pinigina, “Boundary value problem for a class of degenerate Sobolev type systems”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:3 (2012), 127–138 (in Russian)

[6] A. M. Nakhushev, Problems with Shifts for Partial Differential Equations, Nauka, M., 2006 (in Russian)

[7] A. M. Nakhushev, Loaded Equations and Their Applications, Nauka, M., 2012 (in Russian)

[8] M. T. Dzhenaliev, A Remark on the Theory of Linear Boundary Value Problems for Loaded Differential Equations, Almaty, 1995 (in Russian)

[9] S. Ya. Yakubov, Linear Differential-Operator Equations and Their Applications, Elm, Baku, 1985 (in Russian)

[10] Kozhanov A. I., Composite Type Equations and Inverse Problems, VSP, Utrecht, 1999 | MR | Zbl

[11] V. A. Trenogin, Functional Analysis, Nauka, M., 1980 (in Russian) | MR | Zbl

[12] O. A. Ladyzhenskaya, N. N. Uraltseva, Linear and Quasilinear Equations of Elliptic Type, Nauka, M., 1973 (in Russian) | MR