@article{VNGU_2014_14_2_a4,
author = {M. V. Neshchadim},
title = {Sphere {Generalized} {Functional} {Invariant} {Solutions} of {Wave} {Equation}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {42--48},
year = {2014},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a4/}
}
M. V. Neshchadim. Sphere Generalized Functional Invariant Solutions of Wave Equation. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 2, pp. 42-48. http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a4/
[1] R. Courant, D. Gilbert, Methods of Mathematical Physics, v. 2, Interscience, New York, 1962 | Zbl
[2] N. P. Erugin, M. M. Smirnov, “Functional invariant solutions of differential equations”, Diff. Eqs., 17:5 (1981), 853–865 (in Russian) | MR | Zbl
[3] S. L. Sobolev, “Functional invariant solutions of wave equation”, Trudy Fiz. Mat. Inst. im. Steklova V. A., 5, M., 1934, 259–264 (in Russian)
[4] V. I. Smirnov, S. L. Sobolev, “On a new method for solving the plane problem of elastic oscillations”, Tr. Seismol. Inst. Akad. Nauk SSSR, 16 (1932), 14–15 (in Russian)
[5] V. I. Smirnov, S. L. Sobolev, “On Application of a new method to study elastic vibrations in a space with axial symmetry”, Tr. Seismol. Inst. Akad. Nauk SSSR, 29 (1933), 43–51 (in Russian)
[6] O. F. Men'shikh, “Group properties of nonlinear partial differential equations, all of whose solutions are functionally invariant”, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 2004, no. 4, 20–30 (in Russian)
[7] M. S. Shneerson, “Maxwell's equations and functional invariant solutions of wave equation”, Differ. Uravn., 4:4 (1968), 743–758 (in Russian) | MR | Zbl
[8] Kiselev A. P., Perel V. V., “Highly Localized Solutions of the Wave Equation”, J. Math. Phys., 41:4 (2000), 1934–1955 | DOI | MR | Zbl
[9] H. Bateman, The Mathematical Analysis of Electrical and Optical Wave-Motion on the Basis of Maxwell's Equations, Dover, New York, 1955 | MR | Zbl
[10] Friedlander F. G., “Simple Progressing Solutions of the Wave Equation”, Proc. Cambridge Phil. Soc., 43:3 (1947), 360–373 | DOI | MR | Zbl
[11] Kiselev A. P., “Generalization of Bateman–Hillion Progressive Wave and Bessel–Gauss Pulse Solutions of the Wave Equation via a Separation of Variables”, J. Phys. A. Math. Gen., 36:23 (2003), L345–L349 | DOI | MR | Zbl
[12] Volterra V., “Sur les Vibrations des Corps Elastiques Isotropes”, Acta. Math., 18 (1894), 161–332 | DOI | MR
[13] A. P. Kiselev, “Relatively undistorted waves. New examples”, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 275, 2001, 100–103 (in Russian) | MR | Zbl
[14] A. P. Kiselev, “Relatively undistorted cylindrical waves that depend on three space variables”, Mat. Zametki, 79:4 (2006), 635–636 (in Russian) | DOI | MR | Zbl
[15] A. P. Kiselev, M. V. Perel, “Relatively distortion-free waves for the $m$-dimensional wave equation”, Differ. Uravn., 38:8 (2002), 1128–1129 (in Russian) | MR | Zbl
[16] A. P. Kiselev, A. B. Plachenov, “Exact solutions of the $m$-dimensional wave equation from paraxial ones: further generalization of the Bateman solution”, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 393, 2011, 167–177 (in Russian)
[17] Yu. E. Anikonov, M. V. Neshchadim, “On analytical methods in the theory of inverse problems for hyperbolic equations, I”, J. of Appl. and Industr. Math., 5:4 (2011), 506–518 | DOI | MR | MR | Zbl
[18] Yu. E. Anikonov, M. V. Neshchadim, “On analytical methods in the theory of inverse problems for hyperbolic equations, II”, J. of Appl. and Industr. Math., 6:1 (2012), 6–11 | DOI | MR
[19] Yu. E. Anikonov, M. V. Neshchadim, “Representations for the solutions and coefficients of second-order differential equations”, J. of Appl. and Industr. Math., 7:1 (2013), 15–21 | DOI | MR
[20] Yu. E. Anikonov, M. V. Neshchadim, “Representations for the solutions and coefficients of evolution equations”, J. of Appl. and Industr. Math., 7:1 (2013), 326–334 | DOI | MR