Three-Dimensional Vortex Flows of Incompressible Media in the Case of the Constant Volume Saturation Substances
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 2, pp. 15-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The description of the flow of an incompressible viscous fluid for the case of the balance of pressure phases at constant volume saturation substances by scalar functions has been obtained. A system of differential equations for these functions. An example to illustrate this method.
Keywords: two-velocity hydrodynamics, hyperbolic system, vortex flow, quasipotential, Bernoulli integral.
Mots-clés : viscous fluid
@article{VNGU_2014_14_2_a2,
     author = {N. M. Zhabborov and Kh. Kh. Imomnazarov and P. V. Korobov},
     title = {Three-Dimensional {Vortex} {Flows} of {Incompressible} {Media} in the {Case} of the {Constant} {Volume} {Saturation} {Substances}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {15--23},
     year = {2014},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a2/}
}
TY  - JOUR
AU  - N. M. Zhabborov
AU  - Kh. Kh. Imomnazarov
AU  - P. V. Korobov
TI  - Three-Dimensional Vortex Flows of Incompressible Media in the Case of the Constant Volume Saturation Substances
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2014
SP  - 15
EP  - 23
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a2/
LA  - ru
ID  - VNGU_2014_14_2_a2
ER  - 
%0 Journal Article
%A N. M. Zhabborov
%A Kh. Kh. Imomnazarov
%A P. V. Korobov
%T Three-Dimensional Vortex Flows of Incompressible Media in the Case of the Constant Volume Saturation Substances
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2014
%P 15-23
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a2/
%G ru
%F VNGU_2014_14_2_a2
N. M. Zhabborov; Kh. Kh. Imomnazarov; P. V. Korobov. Three-Dimensional Vortex Flows of Incompressible Media in the Case of the Constant Volume Saturation Substances. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 2, pp. 15-23. http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a2/

[1] P. G. Saffman, Vortex Dynamics, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[2] D. V. Nalivkin, Hurricanes, Storms and Tornadoes, Nauka, L., 1969 (in Russian)

[3] A. S. Monin, V. M. Kamenkovich (eds.), Oceanology. Ocean Physics, v. 1, Ocean hydrophysics, Nauka, M., 1978 (in Russian)

[4] S. V. Alekseenko, P. A. Kuybin, V. L. Okulov, Introduction to the Theory of Concentrated Vortices, Novosibirsk, 2003 (in Russian)

[5] Yu. A. Stepanyants, E. I. Yakubovich, “Scalar description of three-dimensional vortex flows of incompressible fluid”, Dokl. RAN, 436:6 (2011), 764–767 (in Russian)

[6] V. N. Dorovskiy, “Continuum theory of filtration”, Geolog. i Geophys., 1989, no. 7, 39–45 (in Russian) | MR

[7] V. N. Dorovskiy, Yu. V. Perepechko, “Phenomenological description of two-speed medium with relaxing shear stresses”, Prikl. Mekh. Tekhn. Fiz., 1992, no. 3, 94–105 (in Russian) | MR

[8] V. N. Dorovskiy, Yu. V. Perepechko, “The theory of partial melting”, Geolog. i Geophys., 1989, no. 9, 56–64 (in Russian)

[9] A. M. Obukhov, “Kolmogorov flow and laboratory simulation of it”, Rus. Math. Surv., 38:4 (1983), 113 | DOI | MR | Zbl