Rational Points in $m$-adic Cantor Sets
    
    
  
  
  
      
      
      
        
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 2, pp. 9-14
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For any natural numbers $m\geq 3$ and $s$, $0$ it is defined Cantor $m$-adic sets $C(m,s)$, the set of real numbers in segment [0, 1] having an expansion on base $m$ without the cipher $s$. It is proved that for any prime number $p>m^2$ the set of simplified fractions of the form $\tfrac{s}{p^t}$ where $s$ and $t$ are and integer is finite (possibly empty).
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Cantor perfect set, $m$-adic expansion.
Mots-clés : rational point
                    
                  
                
                
                Mots-clés : rational point
@article{VNGU_2014_14_2_a1,
     author = {V. Bloshchitsyn},
     title = {Rational {Points} in $m$-adic {Cantor} {Sets}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {9--14},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a1/}
}
                      
                      
                    V. Bloshchitsyn. Rational Points in $m$-adic Cantor Sets. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 2, pp. 9-14. http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a1/
