On Sums of Computable Ordinals
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 2, pp. 3-8
Cet article a éte moissonné depuis la source Math-Net.Ru
It was proved, that for any computable ordinal $\alpha$ there are notation $a \in O$ and partially computable function with propery: for two notations $b$ and $c$ from set $\{ t \in O \mid t $ for ordinals $\beta$ and $\gamma$, $\beta + \gamma \alpha$, it can find notation for $\beta + \gamma$ from this set. And we show, that not all notations for ordinals $\alpha \geqslant \omega^{2}$ has this property.
Keywords:
computable ordinal, notation for computable ordinals, computable function.
@article{VNGU_2014_14_2_a0,
author = {P. E. Alaev},
title = {On {Sums} of {Computable} {Ordinals}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {3--8},
year = {2014},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a0/}
}
P. E. Alaev. On Sums of Computable Ordinals. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 2, pp. 3-8. http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a0/
[1] Badaev S., Mustafa M., Sorbi A., “Rogers Semilattices of Families of Two Embedded Sets in the Ershov Hierarchy”, Mathematical Logic Quarterly, 58:4–5 (2012), 366–376 | DOI | MR | Zbl
[2] H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, N.Y., 1967 | MR | MR | Zbl