On Sums of Computable Ordinals
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 2, pp. 3-8 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It was proved, that for any computable ordinal $\alpha$ there are notation $a \in O$ and partially computable function with propery: for two notations $b$ and $c$ from set $\{ t \in O \mid t $ for ordinals $\beta$ and $\gamma$, $\beta + \gamma \alpha$, it can find notation for $\beta + \gamma$ from this set. And we show, that not all notations for ordinals $\alpha \geqslant \omega^{2}$ has this property.
Keywords: computable ordinal, notation for computable ordinals, computable function.
@article{VNGU_2014_14_2_a0,
     author = {P. E. Alaev},
     title = {On {Sums} of {Computable} {Ordinals}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {3--8},
     year = {2014},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a0/}
}
TY  - JOUR
AU  - P. E. Alaev
TI  - On Sums of Computable Ordinals
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2014
SP  - 3
EP  - 8
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a0/
LA  - ru
ID  - VNGU_2014_14_2_a0
ER  - 
%0 Journal Article
%A P. E. Alaev
%T On Sums of Computable Ordinals
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2014
%P 3-8
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a0/
%G ru
%F VNGU_2014_14_2_a0
P. E. Alaev. On Sums of Computable Ordinals. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 2, pp. 3-8. http://geodesic.mathdoc.fr/item/VNGU_2014_14_2_a0/

[1] Badaev S., Mustafa M., Sorbi A., “Rogers Semilattices of Families of Two Embedded Sets in the Ershov Hierarchy”, Mathematical Logic Quarterly, 58:4–5 (2012), 366–376 | DOI | MR | Zbl

[2] H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, N.Y., 1967 | MR | MR | Zbl