Multilevel Regular Coverings of the Plane by Discs
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 1, pp. 112-128
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the problem of the least dense regular covering the plane with disks of different radii is discussed. The author generalizes different types of regular coverings and introduces a new one, the “multilevel” covering. The bounds for these coverings densities are obtained and a three-level covering with density $\approx 1.083$ is proposed.
Keywords: covering the plane by discs, wireless sensor networks.
@article{VNGU_2014_14_1_a8,
     author = {I. I. Takhonov},
     title = {Multilevel {Regular} {Coverings} of the {Plane} by {Discs}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {112--128},
     year = {2014},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a8/}
}
TY  - JOUR
AU  - I. I. Takhonov
TI  - Multilevel Regular Coverings of the Plane by Discs
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2014
SP  - 112
EP  - 128
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a8/
LA  - ru
ID  - VNGU_2014_14_1_a8
ER  - 
%0 Journal Article
%A I. I. Takhonov
%T Multilevel Regular Coverings of the Plane by Discs
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2014
%P 112-128
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a8/
%G ru
%F VNGU_2014_14_1_a8
I. I. Takhonov. Multilevel Regular Coverings of the Plane by Discs. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 1, pp. 112-128. http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a8/

[1] S. N. Astrakov, V. V. Zalyubovskiy, A. I. Erzin, “Sensor networks and plane coverage by discs”, Diskr. Analiz i Issl. Oper., 16:3 (2009), 3–19 (in Russian) | MR

[2] Kershner R., “The Number of Circles Covering a Set”, American J. of Mathematics, 61:3 (1939), 665–671 | DOI | MR

[3] Wu J., Yang S., “Energy-Efficient Node Scheduling Models in Sensor Networks with Adjustible Ranges”, Int. J. of Foundation of Computer Science, 16:1 (2005), 3–17 | DOI | MR | Zbl

[4] Cardei M., Wu J., Lu M., “Improving Netwotk Lifetime Using Sensors with Adjustible Sensing Ranges”, Int. J. of Sensor Networks, 1:1–2 (2006), 41–49 | DOI

[5] Wu J., Dai F., “Virtual Backbone Construction in MANETs Using Adjustable Transmission Ranges”, IEEE Trans. on Mobile Computing, 5:9 (2006), 1188–1200 | DOI

[6] Zalyubovskiy V., Erzin A., Astrakov S., Choo H., “Energy-Efficient Area Coverage by Sensors with Adjustable Ranges”, Sensors, 9 (2009), 2446–2460 | DOI

[7] Nguen N. D., Zalyubovsky V., Ha M. Th., Le T. D., Choo H., “Energy-Efficient Models for Coverage Problem in Sensor Networks with Adjustable Ranges”, Ad Hoc Sensor Wireless Networks, 16 (2012), 1–28

[8] Erzin A., Astrakov S., “Min-Density Stripe Covering and Applications in Sensor Networks”, LNCS, 6784, Springer-Verlag, Berlin–Heidelberg, 2011, 152–162 | MR

[9] S. Astrakov, A. Erzin, “Building effective coverage models for monitoring of extended objects”, Vych. Tech., 17:1 (2012), 26–34 (in Russian) | MR | Zbl

[10] A. Erzin, R. Plotnikov, Yu. Shamardin, “Some polynomially solvable cases and approximation algorithms for optimal communication tree construction problem”, Diskretn. Anal. Issled. Oper., 20:1 (2013), 12–27 (in Russian)

[11] Erzin A., Plotnikov R., “Wireless Sensor Network's Lifetime Maximization Problem in Case of Given Set of Covers”, LNCS, 6786, Springer-Verlag, Berlin–Heidelberg, 2011, 44–57

[12] A. Erzin, R. Plotnikov, “On maximization of sensor network's lifetime subject to the limited resources”, Diskretn. Anal. Issled. Oper., 18:6 (2011), 17–32 (in Russian) | MR

[13] T. A. Aldyn-ool, A. I. Erzin, V. V. Zalyubovskiy, “The coverage of a planar region by randomly deployed sensors”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:4 (2010), 7–25 (in Russian)

[14] Toth F. G., “Covering the Plane with Two Kinds of Circles”, Discrete Computional Geometry, 13:3 (1995), 445–457 | DOI | MR | Zbl