Harmonic Analysis of Periodic Vectors and Periodic at Infinity Functions
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 1, pp. 98-111

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study vector-valued slowly varying and periodic at infinity functions of several variables. We introduce the notion of Fourier series and derive an analog of the celebrated Wiener theorem that deals with the absolutely convergent Fourier series. We also derive a criterion of representability of periodic at infinity function as a sum of pure periodic and vanishing at infinity functions and criteria of periodicity at infinity for solutions of difference and differential equations. The main results are derived by means of the spectral theory of isometric group representations.
Keywords: Banach space, Banach algebra, slowly varying at infinity functions, periodic at infinity functions, Fourier series, periodic vector, Wiener theorem.
@article{VNGU_2014_14_1_a7,
     author = {I. I. Strukova},
     title = {Harmonic {Analysis} of {Periodic} {Vectors} and {Periodic} at {Infinity} {Functions}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {98--111},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a7/}
}
TY  - JOUR
AU  - I. I. Strukova
TI  - Harmonic Analysis of Periodic Vectors and Periodic at Infinity Functions
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2014
SP  - 98
EP  - 111
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a7/
LA  - ru
ID  - VNGU_2014_14_1_a7
ER  - 
%0 Journal Article
%A I. I. Strukova
%T Harmonic Analysis of Periodic Vectors and Periodic at Infinity Functions
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2014
%P 98-111
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a7/
%G ru
%F VNGU_2014_14_1_a7
I. I. Strukova. Harmonic Analysis of Periodic Vectors and Periodic at Infinity Functions. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 1, pp. 98-111. http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a7/