Harmonic Analysis of Periodic Vectors and Periodic at Infinity Functions
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 1, pp. 98-111
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study vector-valued slowly varying and periodic at infinity functions of several variables. We introduce the notion of Fourier series and derive an analog of the celebrated Wiener theorem that deals with the absolutely convergent Fourier series. We also derive a criterion of representability of periodic at infinity function as a sum of pure periodic and vanishing at infinity functions and criteria of periodicity at infinity for solutions of difference and differential equations. The main results are derived by means of the spectral theory of isometric group representations.
Keywords: Banach space, Banach algebra, slowly varying at infinity functions, periodic at infinity functions, Fourier series, periodic vector, Wiener theorem.
@article{VNGU_2014_14_1_a7,
     author = {I. I. Strukova},
     title = {Harmonic {Analysis} of {Periodic} {Vectors} and {Periodic} at {Infinity} {Functions}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {98--111},
     year = {2014},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a7/}
}
TY  - JOUR
AU  - I. I. Strukova
TI  - Harmonic Analysis of Periodic Vectors and Periodic at Infinity Functions
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2014
SP  - 98
EP  - 111
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a7/
LA  - ru
ID  - VNGU_2014_14_1_a7
ER  - 
%0 Journal Article
%A I. I. Strukova
%T Harmonic Analysis of Periodic Vectors and Periodic at Infinity Functions
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2014
%P 98-111
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a7/
%G ru
%F VNGU_2014_14_1_a7
I. I. Strukova. Harmonic Analysis of Periodic Vectors and Periodic at Infinity Functions. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 1, pp. 98-111. http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a7/

[1] Balan R., Krishtal I. A., “An Almost Periodic Noncommutative {W}iener's Lemma”, J. Math. Anal. Appl., 370 (2010), 339–349 | DOI | MR | Zbl

[2] Baskakov A. G., “Abstract harmonic analysis and asymptotic estimates for elements of inverse matrices”, Math. Notes, 52:2 (1992), 764–771 | DOI | MR | Zbl

[3] Baskakov A. G., “Asymptotic estimates for elements of matrices of inverse operators, and harmonic analysis”, Siberian Math. J., 38:1 (1997), 10–22 | DOI | MR | Zbl

[4] Baskakov A. G., “Spectral tests for the almost periodicity of the solutions of functional equations”, Math. Notes, 24:1–2 (1979), 606–612 | MR | Zbl

[5] Baskakov A. G., “Bernšteĭn-type inequalities in abstract harmonic analysis”, Siberian Math. J., 20:5 (1980), 665–672 | DOI | MR | Zbl | Zbl

[6] Baskakov A. G., “Theory of representations of Banach algebras, and abelian groups and semigroups in the spectral analysis of linear operators”, J. Math. Sci. (N.Y.), 137:4 (2006), 4885–5036 | DOI | MR

[7] Daletsky Yu. L., Krein M. G., Stability of Solutions of Differential Equations in Banach Space, Nauka. Fizmatlit, M., 1970 (in Russian)

[8] Kurbatov V. G., Kuznetsova V. I., “About the invertibility of a difference-integral operator in the space of slowly varying at infinity functions”, Proc. of VSU. Ser. Mat., 2013, no. 2, 177–188 (in Russian)

[9] Pak I. N., “On the sums of trigonometric series”, Russian Mathematical Surveys, 35:2 (1980), 105–168 | DOI | MR | Zbl | Zbl

[10] Karamata J., “Sur un Mode de Croissance Régulière. Théorèmes Fondamentaux”, Bulletin S. M. F., 61 (1933), 55–62 | MR

[11] Hardy G. H., “A Theorem Concerning Trigonometrical Series”, Journal L. M. S., 3 (1928), 12–13 | Zbl

[12] Seneta E., Regularly Varying Functions, Lecture Notes in Mathematics, 508, Springer-Verlag, Berlin, 1976 | DOI | MR | Zbl

[13] Levin B. Ya., Distribution of zeros of entire functions, Gosudarstv. Izdat. Tehn.-Teor. Lit., M., 1956 (in Russian)

[14] Baskakov A. G., “Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations”, Russian Math. Surveys, 68:1 (2013), 69–116 | DOI | DOI | MR | Zbl

[15] Baskakov A. G., “Wiener's theorem and asymptotic estimates for elements of inverse matrices”, Funct. Anal. Appl., 24:3 (1991), 222–224 | DOI | MR

[16] Baskakov A. G., “Estimates for the elements of inverse matrices, and the spectral analysis of linear operators”, Izv. Math., 61:6 (1997), 1113–1135 | DOI | DOI | MR | Zbl

[17] Krishtal I., “Wiener's Lemma and Memory Localization”, J. Fourier Anal. Appl., 17 (2011), 674–690 | DOI | MR | Zbl

[18] Wiener N., “Tauberian theorems”, Ann. of Math., 33:2 (1932), 1–100 | DOI | MR

[19] Strukova I. I., “Wiener's theorem for periodic at infinity functions”, Izv. Sarat. Univ. Nov. Ser. Mat. Mex. Inf., 12:4 (2012), 34–41 (in Russian) | MR

[20] Baskakov A. G., Krishtal I. A., “Harmonic analysis of causal operators and their spectral properties”, Izv. Math., 69:3 (2005), 439–486 | DOI | DOI | MR | MR | Zbl

[21] Hille E., Phillips R. S., Functional Analysis and Semi-Groups, American Mathematical Society Colloquium Publications, 31, American Mathematical Society, Providence, R.I., 1957 | MR | Zbl

[22] Baskakov A. G., “General ergodic theorems in Banach modules”, J. Funct. Anal., 14:3 (1980), 215–217 | DOI | MR

[23] Baskakov A. G., “Harmonic analysis of cosine and exponential operator-valued functions”, Math. of the USSR-Sbornik, 52:1 (1985), 63–90 | DOI | MR | MR | Zbl | Zbl

[24] Baskakov A. G., “Operator ergodic theorems and complementability of subspaces of Banach spaces”, Soviet Math. (Izvestiya VUZ. Matematika), 32:11 (1988), 1–14 | MR | Zbl

[25] Chicone C., Latushkin Y., Evolution Semigroups in Dynamical Systems and Differential Equations, Mathematical Surveys and Monographs, 70, American Mathematical Society, Providence, R.I., 1999 | DOI | MR | Zbl