Bilinear Relations for Periods Prym Differentials on Riemann Surfaces
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 1, pp. 66-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Riemann's bilinear relations for periods Abelian differentials play big role in geometrical theory functions on fixed compact Riemann surfaces. In article are all basic relations for periods and views bilinear relations between periods elementary Prym differentials three kinds on variable compact Riemann surface for every characters found.
Keywords: periods Prym differentials, variable compact Riemann surface, characters.
@article{VNGU_2014_14_1_a5,
     author = {T. A. Pushkareva},
     title = {Bilinear {Relations} for {Periods} {Prym} {Differentials} on {Riemann} {Surfaces}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {66--83},
     year = {2014},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a5/}
}
TY  - JOUR
AU  - T. A. Pushkareva
TI  - Bilinear Relations for Periods Prym Differentials on Riemann Surfaces
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2014
SP  - 66
EP  - 83
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a5/
LA  - ru
ID  - VNGU_2014_14_1_a5
ER  - 
%0 Journal Article
%A T. A. Pushkareva
%T Bilinear Relations for Periods Prym Differentials on Riemann Surfaces
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2014
%P 66-83
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a5/
%G ru
%F VNGU_2014_14_1_a5
T. A. Pushkareva. Bilinear Relations for Periods Prym Differentials on Riemann Surfaces. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 1, pp. 66-83. http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a5/

[1] L. Ahlfors, L. Bers, Spaces of Riemann Surfaces and Quasiconformal Mappings, Inostrannaya Literatura, M., 1961 (in Russian)

[2] Appell P., “Sur les Integrales de Fonctions a Multiplicateurs et leur Application an Developpement des Fonctions Abeliennes en Series Trigonometriques”, Acta Math., 13:3/4 (1890), 1–174

[3] Fay J., “Analytic Torsion and Prym Differential”, Proc. of the 1978 Stony Brook Conf., Princeton Univ. Press, 1980, 107–122 | MR

[4] Jablow E., “An Analogue of the Rauch Variational Formula for Prym Differentials”, Israel J. of Math., 65:3 (1989), 323–355 | DOI | MR

[5] Jorgensson J., “Analytic Torsion for Line Bundle on Riemann Surface”, Duke Math. J., 62:3 (1991), 527–549 | DOI | MR

[6] Kempf G., “A Property of the Periods of a Prym Differential”, Proc. of the Amer. Math. Soc., 54 (1976), 181–184 | DOI | MR | Zbl

[7] Farkas H. M., Kra I., Riemann Surfaces, Grad. Text's Math., 71, Springer-Verlag, N.Y., 1992 | DOI | MR | Zbl

[8] Gunning R. C., “On the Period Classes of Prym Differentials”, J. Reine Angew. Math., 319 (1980), 153–171 | MR | Zbl

[9] V. V. Chueshev, Multiplicative Functions and Prym Differentials on Variable Compact Riemann Surfaces, v. II, Izd-vo KemGU, Kemerovo, 2003 (in Russian) | Zbl

[10] T. A. Pushkareva, “Residues and elementary Prym differentials on the compact Riemann surface”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:2 (2013), 99–118 (in Russian) | Zbl

[11] M. I. Tulina, “Single-valued differentials and special divisors of Prym differentials”, Sib. Mat. J., 54:4 (2013), 731–745 | DOI | MR | Zbl

[12] V. V. Chueshev, Schottky Space, Kobe and Teichmuller, Geometric Theory of Functions, Lambert Academic Publishing, Saarbruecken, 2012