Strong Traces for Entropy Solutions of Second Order Differential Forward-Backward Parabolic Equations
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 1, pp. 44-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that the entropy solution of the second order differential forward-backward parabolic equation has a strong trace in $L^1$ which can only partly coincide with boundary conditions.
Keywords: entropy solution, forward-backward parabolic equation, $H$-measure.
@article{VNGU_2014_14_1_a4,
     author = {I. V. Kuznetsov},
     title = {Strong {Traces} for {Entropy} {Solutions} of {Second} {Order} {Differential} {Forward-Backward} {Parabolic} {Equations}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {44--65},
     year = {2014},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a4/}
}
TY  - JOUR
AU  - I. V. Kuznetsov
TI  - Strong Traces for Entropy Solutions of Second Order Differential Forward-Backward Parabolic Equations
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2014
SP  - 44
EP  - 65
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a4/
LA  - ru
ID  - VNGU_2014_14_1_a4
ER  - 
%0 Journal Article
%A I. V. Kuznetsov
%T Strong Traces for Entropy Solutions of Second Order Differential Forward-Backward Parabolic Equations
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2014
%P 44-65
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a4/
%G ru
%F VNGU_2014_14_1_a4
I. V. Kuznetsov. Strong Traces for Entropy Solutions of Second Order Differential Forward-Backward Parabolic Equations. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 1, pp. 44-65. http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a4/

[1] S. N. Kružkov, “First order quasilinear equations in several independent variables”, Math. in the USSR-Sbor., 10:2 (1970), 217–243 | DOI | MR | Zbl | Zbl

[2] Otto F., “Conservation Laws in Bounded Domains, Uniqueness and Existence via Parabolic Approximation”: J. Málek, J. Nečas, M. Rokyta, M. Ružička, Weak and Measure-Valued Solutions to Evolutionary PDE's, Chap. 2, § 2.6–2.8, Chapman Hall, 1996, 95–143

[3] Carrillo J., “Entropy Solutions for Nonlinear Degenerate Problems”, Arch. Rational Mech. Anal., 147:4 (1999), 269–361 | DOI | MR | Zbl

[4] Ammar K., “Degenerate Triply Nonlinear Problems with Nonhomogeneous Boundary Conditions”, Cent. Eur. J. Math., 8:3 (2010), 548–568 | DOI | MR | Zbl

[5] I. V. Kuznetsov, “Entropy solutions to a second order forward-backward parabolic differential equation”, Sib. Mat. J., 46:3 (2005), 467–488 | DOI | MR | Zbl

[6] I. V. Kuznetsov, “Entropy solutions to a second-order forward-backward parabolic equation”, Dokl. Math., 72:4 (2005), 716–717 | MR | Zbl

[7] I. V. Kuznetsov, “Singular limits of solutions of a pseudo-parabolic equation with a small parameter at the leading derivative”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:4 (2012), 82–100 (in Russian) | Zbl

[8] Vasseur A., “Strong Traces for Solutions of Multidimensional Scalar Conservation Laws”, Arch. Ration. Mech. Anal., 160:3 (2001), 181–193 | DOI | MR | Zbl

[9] Kwon Y.-S., Vasseur A., “Strong Traces for Solutions of Scalar Conservation Laws with General Flux”, Arch. Ration. Mech. Anal., 185:3 (2007), 495–513 | DOI | MR | Zbl

[10] Panov E. Yu., “Existence of Strong Traces for Generalized Solutions of Multidimensional Scalar Conservation Laws”, J. Hyperbolic Differ. Equ., 2:4 (2005), 885–908 | DOI | MR | Zbl

[11] Panov E. Yu., “Existence of Strong Trances for Quasi-Solutions of Multidimensional Conservation Laws”, J. Hyperbolic Differ. Equ., 4:4 (2007), 729–770 | DOI | MR | Zbl

[12] Aleksic J., Mitrovic D., “Strong Traces for Averaged Solutions of Heterogeneous Ultra-Parabolic Transport Equations”, J. Hyperbolic Differ. Equ., 2014 (to appear) | MR

[13] Tartar L., An introduction to Sobolev Spaces and Interpolation Spaces, Lecture Notes of the Unione Matematica Italiana, 3, Springer-Verlag, Berlin–Bologna, 2007 | MR

[14] L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, Second Edition, 2010 | MR | Zbl

[15] Vessella S., “Unique Continuation Properties and Quantitative Estimates of Unique Continuation for Parabolic Equations”, Handbook of Differential Equations: Evolutionary Equations, v. 5, 2009, 421–500 | DOI | MR | Zbl

[16] E. Yu. Panov, “On sequences of measure-valued solutions of a first-order quasilinear equation”, Russian Academy of Sciences. Sbornik. Mathematics, 81:1 (1995), 211–227 | DOI | MR | Zbl

[17] S. A. Sazhenkov, “The genuinely nonlinear Graetz–Nusselt ultraparabolic equation”, Sib. Mat. J., 47:2 (2006), 355–375 | DOI | MR | Zbl

[18] S. A. Sazhenkov, Entropy solutions of nonlinear dynamics problems of multiphase mediums, Thes. Doc. Math.-Phys. Degree, Novosibirsk, 2012 (in Russian)

[19] Tartar L., “$H$-measures, a New Approach for Studying Homogenisation, Oscillations and Concentration Effects in Partial Differential Equations”, Proc. R. Soc. Edinb., 115A (1990), 193–230 | DOI | MR | Zbl

[20] Tartar L., The General Theory of Homogenization. A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana, 7, Springer-Verlag, Berlin; UMI, Bologna, 2009 | MR | Zbl

[21] I. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, 30, Princeton University Press, 1971 | MR

[22] I. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, 32, Princeton University Press, 1971 | MR | Zbl