@article{VNGU_2014_14_1_a4,
author = {I. V. Kuznetsov},
title = {Strong {Traces} for {Entropy} {Solutions} of {Second} {Order} {Differential} {Forward-Backward} {Parabolic} {Equations}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {44--65},
year = {2014},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a4/}
}
TY - JOUR AU - I. V. Kuznetsov TI - Strong Traces for Entropy Solutions of Second Order Differential Forward-Backward Parabolic Equations JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2014 SP - 44 EP - 65 VL - 14 IS - 1 UR - http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a4/ LA - ru ID - VNGU_2014_14_1_a4 ER -
%0 Journal Article %A I. V. Kuznetsov %T Strong Traces for Entropy Solutions of Second Order Differential Forward-Backward Parabolic Equations %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2014 %P 44-65 %V 14 %N 1 %U http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a4/ %G ru %F VNGU_2014_14_1_a4
I. V. Kuznetsov. Strong Traces for Entropy Solutions of Second Order Differential Forward-Backward Parabolic Equations. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 1, pp. 44-65. http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a4/
[1] S. N. Kružkov, “First order quasilinear equations in several independent variables”, Math. in the USSR-Sbor., 10:2 (1970), 217–243 | DOI | MR | Zbl | Zbl
[2] Otto F., “Conservation Laws in Bounded Domains, Uniqueness and Existence via Parabolic Approximation”: J. Málek, J. Nečas, M. Rokyta, M. Ružička, Weak and Measure-Valued Solutions to Evolutionary PDE's, Chap. 2, § 2.6–2.8, Chapman Hall, 1996, 95–143
[3] Carrillo J., “Entropy Solutions for Nonlinear Degenerate Problems”, Arch. Rational Mech. Anal., 147:4 (1999), 269–361 | DOI | MR | Zbl
[4] Ammar K., “Degenerate Triply Nonlinear Problems with Nonhomogeneous Boundary Conditions”, Cent. Eur. J. Math., 8:3 (2010), 548–568 | DOI | MR | Zbl
[5] I. V. Kuznetsov, “Entropy solutions to a second order forward-backward parabolic differential equation”, Sib. Mat. J., 46:3 (2005), 467–488 | DOI | MR | Zbl
[6] I. V. Kuznetsov, “Entropy solutions to a second-order forward-backward parabolic equation”, Dokl. Math., 72:4 (2005), 716–717 | MR | Zbl
[7] I. V. Kuznetsov, “Singular limits of solutions of a pseudo-parabolic equation with a small parameter at the leading derivative”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:4 (2012), 82–100 (in Russian) | Zbl
[8] Vasseur A., “Strong Traces for Solutions of Multidimensional Scalar Conservation Laws”, Arch. Ration. Mech. Anal., 160:3 (2001), 181–193 | DOI | MR | Zbl
[9] Kwon Y.-S., Vasseur A., “Strong Traces for Solutions of Scalar Conservation Laws with General Flux”, Arch. Ration. Mech. Anal., 185:3 (2007), 495–513 | DOI | MR | Zbl
[10] Panov E. Yu., “Existence of Strong Traces for Generalized Solutions of Multidimensional Scalar Conservation Laws”, J. Hyperbolic Differ. Equ., 2:4 (2005), 885–908 | DOI | MR | Zbl
[11] Panov E. Yu., “Existence of Strong Trances for Quasi-Solutions of Multidimensional Conservation Laws”, J. Hyperbolic Differ. Equ., 4:4 (2007), 729–770 | DOI | MR | Zbl
[12] Aleksic J., Mitrovic D., “Strong Traces for Averaged Solutions of Heterogeneous Ultra-Parabolic Transport Equations”, J. Hyperbolic Differ. Equ., 2014 (to appear) | MR
[13] Tartar L., An introduction to Sobolev Spaces and Interpolation Spaces, Lecture Notes of the Unione Matematica Italiana, 3, Springer-Verlag, Berlin–Bologna, 2007 | MR
[14] L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, Second Edition, 2010 | MR | Zbl
[15] Vessella S., “Unique Continuation Properties and Quantitative Estimates of Unique Continuation for Parabolic Equations”, Handbook of Differential Equations: Evolutionary Equations, v. 5, 2009, 421–500 | DOI | MR | Zbl
[16] E. Yu. Panov, “On sequences of measure-valued solutions of a first-order quasilinear equation”, Russian Academy of Sciences. Sbornik. Mathematics, 81:1 (1995), 211–227 | DOI | MR | Zbl
[17] S. A. Sazhenkov, “The genuinely nonlinear Graetz–Nusselt ultraparabolic equation”, Sib. Mat. J., 47:2 (2006), 355–375 | DOI | MR | Zbl
[18] S. A. Sazhenkov, Entropy solutions of nonlinear dynamics problems of multiphase mediums, Thes. Doc. Math.-Phys. Degree, Novosibirsk, 2012 (in Russian)
[19] Tartar L., “$H$-measures, a New Approach for Studying Homogenisation, Oscillations and Concentration Effects in Partial Differential Equations”, Proc. R. Soc. Edinb., 115A (1990), 193–230 | DOI | MR | Zbl
[20] Tartar L., The General Theory of Homogenization. A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana, 7, Springer-Verlag, Berlin; UMI, Bologna, 2009 | MR | Zbl
[21] I. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, 30, Princeton University Press, 1971 | MR
[22] I. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, 32, Princeton University Press, 1971 | MR | Zbl