Elimination of metarecursive in Owing's theorem
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 1, pp. 35-43
Voir la notice de l'article provenant de la source Math-Net.Ru
Proved existence of universe and minimal $\Pi^{1}_{1}$-numerations of $\Pi^{1}_{1}$-sets and absence of Friedberg and positive $\Pi^{1}_{1}$-numerations of all $\Pi^{1}_{1}$-sets.
Keywords:
enumeration, minimal numeration, Friedberg numeration, positive numeration, analytical hierarchy.
@article{VNGU_2014_14_1_a3,
author = {M. V. Dorzhieva},
title = {Elimination of metarecursive in {Owing's} theorem},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {35--43},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a3/}
}
M. V. Dorzhieva. Elimination of metarecursive in Owing's theorem. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 1, pp. 35-43. http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a3/