@article{VNGU_2014_14_1_a3,
author = {M. V. Dorzhieva},
title = {Elimination of metarecursive in {Owing's} theorem},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {35--43},
year = {2014},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a3/}
}
M. V. Dorzhieva. Elimination of metarecursive in Owing's theorem. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 1, pp. 35-43. http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a3/
[1] Owings J. C., Jr., “The Meta-$r.e.$ Sets, but not the $\Pi_{1}^{1}$ Sets, Can be Enumerated without Repetition”, J. of Symbolic Logic, 35:2 (1970), 223–229 | DOI | MR | Zbl
[2] Kreisel G., Sacks G. E., “Metarecursive Sets”, J. of Symbolic Logic, 30:3 (1965), 318–338 | DOI | MR | Zbl
[3] Rogers H., Theory of Recursive Functions and Effective Computability, McGraw-Hill, N.Y., 1967 | MR | Zbl
[4] Sacks G. E., Higher Recursion Theory, Perspectives in Mathematical Logic, Springer, Berlin, 1990 | DOI | MR
[5] Owings J. C., Jr., “$\Pi_{1}^{1}$-Sets, $\omega$-Sets, and Metacompletness”, J. of Symbolic Logic, 34:2 (1969), 194–204 | DOI | MR | Zbl
[6] Ershov Yu. L., Teoriya Numeratsyj, Nauka, M., 1977 (in Russian) | MR
[7] S. S. Goncharov, N. T. Kogabaev, “On $\Sigma^0_1$-classification of relations on computable structures”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 8:4 (2008), 23–33 (in Russian) | MR | Zbl
[8] Goncharov S. S., Night J., “Computable Structure and Non-Structure Theorems”, Algebra and Logic, 41:6 (2002), 351–373 | DOI | MR | Zbl
[9] Friedberg R. M., “Three Theorems on Recursive Enumeration”, J. of Symbolic Logic, 23:3 (1958), 309–316 | DOI | MR
[10] Goncharov S. S., Sorbi A., “Generalised Computable Numerations and non-Trival Rogers Semilattices”, Algebra and Logic, 36:6 (1997), 359–369 | DOI | MR | Zbl