An Algorithm of Logistic Costs Minimization Under Constraints on Supply Volumes
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 1, pp. 28-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A problem of minimization of delivery and storage costs of a product is considered under constraints on volumes of delivery from each of the suppliers. It is required to determine optimal volumes and times of product shipments. The problem is $NP$-hard. In this paper, the problem is proved to be pseudopolynomially solvable and an algorithm for its solution is proposed.
Keywords: complexity theory, logistics, dynamic programming
Mots-clés : pseudopolynomial algorithm.
@article{VNGU_2014_14_1_a2,
     author = {N. I. Burlakova and V. V. Servakh},
     title = {An {Algorithm} of {Logistic} {Costs} {Minimization} {Under} {Constraints} on {Supply} {Volumes}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {28--34},
     year = {2014},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a2/}
}
TY  - JOUR
AU  - N. I. Burlakova
AU  - V. V. Servakh
TI  - An Algorithm of Logistic Costs Minimization Under Constraints on Supply Volumes
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2014
SP  - 28
EP  - 34
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a2/
LA  - ru
ID  - VNGU_2014_14_1_a2
ER  - 
%0 Journal Article
%A N. I. Burlakova
%A V. V. Servakh
%T An Algorithm of Logistic Costs Minimization Under Constraints on Supply Volumes
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2014
%P 28-34
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a2/
%G ru
%F VNGU_2014_14_1_a2
N. I. Burlakova; V. V. Servakh. An Algorithm of Logistic Costs Minimization Under Constraints on Supply Volumes. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 1, pp. 28-34. http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a2/

[1] Nauka, M., 1967

[2] Infra-M, M., 2005

[3] Pervozvansky A. A., Mathematical Methods in Production Management, Nauka, M., 1975 (in Russian)

[4] Ryzhikov Y. I., Queuing Theory and Inventory Control, Piter, Spb., 2001 (in Russian)

[5] J. of Applied and Industrial Mathematics, 1:4 (2007), 433–441 | DOI | MR | Zbl

[6] Chauhan S. S., Proth J. M., “The Concave Cost Supply Problem”, European J. of Operational Research, 148:2 (2003), 374–383 | DOI | MR | Zbl

[7] Chauhan S. S., Eremeev A. V., Romanova A. A., Servakh V. V., Woeginger G. J., “Approximation of the Supply Scheduling Problem”, Operations Research Letters, 33:3 (2005), 249–254 | DOI | MR | Zbl