An Algorithm of Logistic Costs Minimization Under Constraints on Supply Volumes
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 1, pp. 28-34
Cet article a éte moissonné depuis la source Math-Net.Ru
A problem of minimization of delivery and storage costs of a product is considered under constraints on volumes of delivery from each of the suppliers. It is required to determine optimal volumes and times of product shipments. The problem is $NP$-hard. In this paper, the problem is proved to be pseudopolynomially solvable and an algorithm for its solution is proposed.
Keywords:
complexity theory, logistics, dynamic programming
Mots-clés : pseudopolynomial algorithm.
Mots-clés : pseudopolynomial algorithm.
@article{VNGU_2014_14_1_a2,
author = {N. I. Burlakova and V. V. Servakh},
title = {An {Algorithm} of {Logistic} {Costs} {Minimization} {Under} {Constraints} on {Supply} {Volumes}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {28--34},
year = {2014},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a2/}
}
TY - JOUR AU - N. I. Burlakova AU - V. V. Servakh TI - An Algorithm of Logistic Costs Minimization Under Constraints on Supply Volumes JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2014 SP - 28 EP - 34 VL - 14 IS - 1 UR - http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a2/ LA - ru ID - VNGU_2014_14_1_a2 ER -
N. I. Burlakova; V. V. Servakh. An Algorithm of Logistic Costs Minimization Under Constraints on Supply Volumes. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 1, pp. 28-34. http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a2/
[1] Nauka, M., 1967
[2] Infra-M, M., 2005
[3] Pervozvansky A. A., Mathematical Methods in Production Management, Nauka, M., 1975 (in Russian)
[4] Ryzhikov Y. I., Queuing Theory and Inventory Control, Piter, Spb., 2001 (in Russian)
[5] J. of Applied and Industrial Mathematics, 1:4 (2007), 433–441 | DOI | MR | Zbl
[6] Chauhan S. S., Proth J. M., “The Concave Cost Supply Problem”, European J. of Operational Research, 148:2 (2003), 374–383 | DOI | MR | Zbl
[7] Chauhan S. S., Eremeev A. V., Romanova A. A., Servakh V. V., Woeginger G. J., “Approximation of the Supply Scheduling Problem”, Operations Research Letters, 33:3 (2005), 249–254 | DOI | MR | Zbl