D.c.e. degrees of categoricity for Boolean algebras with a distinguished automorphism
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 1, pp. 19-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that every d.c.e. Turing degree is the degree of categoricity of some computable Boolean algebra with a distinguished automorphism.
Keywords: Boolean algebra with a distinguished automorphism, computable categoricity, categoricity spectrum, degree of categoricity.
@article{VNGU_2014_14_1_a1,
     author = {N. A. Bazhenov},
     title = {D.c.e. degrees of categoricity for {Boolean} algebras with a distinguished automorphism},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {19--27},
     year = {2014},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a1/}
}
TY  - JOUR
AU  - N. A. Bazhenov
TI  - D.c.e. degrees of categoricity for Boolean algebras with a distinguished automorphism
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2014
SP  - 19
EP  - 27
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a1/
LA  - ru
ID  - VNGU_2014_14_1_a1
ER  - 
%0 Journal Article
%A N. A. Bazhenov
%T D.c.e. degrees of categoricity for Boolean algebras with a distinguished automorphism
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2014
%P 19-27
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a1/
%G ru
%F VNGU_2014_14_1_a1
N. A. Bazhenov. D.c.e. degrees of categoricity for Boolean algebras with a distinguished automorphism. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 1, pp. 19-27. http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a1/

[1] Fröhlich A., Shepherdson J., “Effective procedures in field theory”, Philos. Trans. Roy. Soc. London. Ser. A, 248:950 (1956), 407–432 | DOI | MR | Zbl

[2] A. I. Mal'tsev, “Konstruktivnye algebry, I”, Usp. mat. nauk, 16:3 (1961), 3–60 | MR | Zbl

[3] Goncharov S., Harizanov V., Knight J., McCoy C., Miller R., Solomon R., “Enumerations in Computable Structure Theory”, Ann. Pure Appl. Logic, 136:3 (2005), 219–246 | DOI | MR | Zbl

[4] Chisholm J., Fokina E. B., Goncharov S. S., Harizanov V. S., Knight J. F., Quinn S., “Intrinsic Bounds on Complexity and Definability at Limit Levels”, J. Symb. Logic, 74:3 (2009), 1047–1060 | DOI | MR | Zbl

[5] Fokina E. B., Kalimullin I., Miller R., “Degrees of Categoricity of Computable Structures”, Arch. Math. Logic, 49:1 (2010), 51–67 | DOI | MR | Zbl

[6] Csima B. F., Franklin J. N. Y., Shore R. A., “Degrees of Categoricity and the Hyperarithmetic Hierarchy”, Notre Dame J. Formal Logic, 54:2 (2013), 215–231 | DOI | MR | Zbl

[7] S. S. Goncharov, “Degrees of autostability relative to strong constructivizations”, Proc. of the Steklov Institute of Mathematics, 274, no. 1, 2011, 105–115 | DOI | MR | Zbl

[8] S. S. Goncharov, V. D. Dzgoev, “Autostability of models”, Algebra and Logic, 19:1 (1980), 28–37 | DOI | MR | Zbl

[9] Remmel J. B., “Recursive Isomorphism Types of Recursive Boolean Algebras”, J. Symb. Logic, 46:3 (1981), 572–594 | DOI | MR | Zbl

[10] McCoy C., “$\Delta^0_2$-Categoricity in Boolean Algebras and Linear Orderings”, Ann. Pure Appl. Logic, 119:1–3 (2003), 85–120 | DOI | MR | Zbl

[11] Ch. F. D. McCoy, “Partial results in $\Delta^0_3$-categoricity in linear orderings and boolean algebras”, Algebra and Logic, 41:5 (2002), 295–305 | DOI | MR | Zbl

[12] P. E. Alaev, “Autostable $I$-Algebras”, Algebra and Logic, 43:5 (2004), 285–306 | DOI | MR | Zbl

[13] N. A. Bazhenov, “On $\Delta^0_2$-categoricity of boolean algebras”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:2 (2013), 3–14 (in Russian) | MR | Zbl

[14] V. I. Mart'yanov, “Undecidability of the theory of Boolean algebras with an automorphism”, Sib. Mat. Zh., 23:3 (1982), 147–154 (in Russian) | MR | Zbl

[15] D. E. Pal'chunov, A. V. Trofimov, “Automorphisms of Boolean algebras definable by fixed elements”, Algebra and Logic, 51:5 (2012), 415–424 | DOI | MR | Zbl

[16] R. Tukhbatullina, “Autostable of boolean algebra $\mathfrak{B}_{\omega}$, enriched by automorphism”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:3 (2010), 110–118 (in Russian) | Zbl

[17] S. S. Goncharov, Countable Boolean Algebras and Decidability, Kluwer Academic/Plenum Publishers, New York, etc., 1997 | MR | MR

[18] S. S. Goncharov, Yu. L. Ershov, Constructive Models, Kluwer Academic/Plenum Press, New York, 2002

[19] Ash C. J., Knight J. F., Computable Structures and the Hyperarithmetical Hierarchy, Elsevier Science B. V., Amsterdam, 2000 | Zbl

[20] N. A. Bazhenov, R. R. Tukhbatullina, “Constructivizability of the boolean algebra $\mathfrak{B}(\omega)$ with a distinguished automorphism”, Algebra and Logic, 51:5 (2012), 384–403 | DOI | MR | Zbl