Local Quasim\"{o}bius Mappings on a Circle
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 1, pp. 3-18
Voir la notice de l'article provenant de la source Math-Net.Ru
For a family of continuous light mappings of a circle $S$ into itself it is introduced the notion ${\mathcal D}$-normality which signifies that for every graphically convergent sequence its graphical limit looks like $(Z\times S)\cup \Gamma f$, where $Z$ — zero-dimensional compact set (possibly, empty), and $\Gamma f$ is a graph of either constant mapping or continuous light mapping. It is proved that every ${\mathcal D}$-normal and Möbius invariant family of the mappings of circle $S$ into itself consist of local $\omega$-quasimöbius mappings with unified distortion function $\omega$.
Keywords:
quasiconformal mapping, quasisymmetric mappings, quasimöbius mapping, local quasimöbius mapping, light mapping, graphical limit, graphical convergence, normal family of mappings, Möbius invariant families of mappings.
@article{VNGU_2014_14_1_a0,
author = {V. V. Aseev and D. G. Kuzin},
title = {Local {Quasim\"{o}bius} {Mappings} on a {Circle}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {3--18},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a0/}
}
V. V. Aseev; D. G. Kuzin. Local Quasim\"{o}bius Mappings on a Circle. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 1, pp. 3-18. http://geodesic.mathdoc.fr/item/VNGU_2014_14_1_a0/