Mots-clés : normal Radon transform, singular value decomposition, orthogonal polynomials.
@article{VNGU_2013_13_4_a9,
author = {A. P. Polyakova},
title = {Reconstruction of vector field which given in ball by its known the normal {Radon} transform},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {119--142},
year = {2013},
volume = {13},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2013_13_4_a9/}
}
TY - JOUR AU - A. P. Polyakova TI - Reconstruction of vector field which given in ball by its known the normal Radon transform JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2013 SP - 119 EP - 142 VL - 13 IS - 4 UR - http://geodesic.mathdoc.fr/item/VNGU_2013_13_4_a9/ LA - ru ID - VNGU_2013_13_4_a9 ER -
A. P. Polyakova. Reconstruction of vector field which given in ball by its known the normal Radon transform. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 4, pp. 119-142. http://geodesic.mathdoc.fr/item/VNGU_2013_13_4_a9/
[1] Munk W., Wunsh C., “Ocean Acoustic Tomography: a Scheme for Large-Scale Monitoring”, Deep-Sea Res., 26A (1979), 123–161 | DOI
[2] Juhlin P., “Doppler Tomography”, Proc. $15^\text{th}$ Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Soc. (San Diego, 1993)
[3] Johnson S. A., Greenleaf J. F., Hansen C. R., Samayoa W. F., Tanaka M., Lent A., Christensen D. A., Wolley R. L., “Reconstruction Three-Dimentional Fluid Velocity Vector Fields from Acoustic Transmission Measurements”, Acoustical Holography, v. 7, ed. L. W. Kessler, Plenum Press, N. Y., 1977, 307–326 | DOI
[4] Norton S. J., “Tomographic Reconstruction of 2-D Vector Fields: Application to Flow Imaging”, J. Geophys., 97 (1987), 161–168 | DOI
[5] Braun H., Hauck A., “Tomographic Reconstruction of Vector Fields”, IEEE Transactions on Processing, 39:2 (1991), 464–471 | DOI | Zbl
[6] Norton S. J., “Unique Tomographic Reconstruction of Vector Fields Using Boundary Data”, IEEE Trans. Image Processing, 1:3 (1992), 406–412 | DOI | MR
[7] Prince J. L., “Tomographic Reconstruction of 3-D Vector Fields Using Inner Product Probes”, IEEE Trans.Image Processing, 3:2 (1992), 216–219 | DOI
[8] F. Natterer, The Mathematics of Computerized Tomography, B. G. Teubner and John Wiley and Sons, Stuttgart, 1986 | MR | MR | Zbl | Zbl
[9] Louis A. K., “Orthogonal Function Series Expansions and the Null Space of the Radon Transform”, Society for Industrial and Applied Mathematics, 15:3 (1984), 621–633 | MR | Zbl
[10] Maass P., “The X-ray Transform: Singular Value Decomposition and Resolution”, Inverse Problems, 3 (1987), 727–741 | DOI | MR
[11] Derevtsov E. Yu., Efimov A. V., Louis A. K., Schuster T., “Singular Value Decomposition and its Application to Numerical Inversion for Ray Transforms in 2D Vector Tomography”, J. Inverse Ill-Posed Problems, 19:4–5 (2011), 689–715 | MR | Zbl
[12] A. P. Polyakova, E. Yu. Derevtsov, “Solution of the problem of integral geometry of the 2-tensor fields via singular value decomposition method”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:3 (2012), 73–94 (in Russian) | Zbl
[13] Kazantsev S. G., Bukhgeim A. A., “Singular Value Decomposition for the 2D Fan-Beam Radon Transform of Tensor Fields”, J. Inv. Ill-Posed Problems, 12:4 (2004), 1–35 | MR
[14] Weyl H., “The Method of Orthogonal Projection in Potential Theory”, Duke Math. J., 1940, no. 7, 411–444 | DOI | MR
[15] Deans S., The Radon Transform and Some of its Applications, Wiley, N. Y., 1983 | MR | Zbl
[16] E. Yu. Derevtsov, Tomografiya Slozhnykh Sred: Modeli, Metody, Algoritmy, v. I, Modeli Skalyarnoy Tomografii, Gorno-Altayskiy gosudarstvennyy universitet, Gorno-Altaysk, 2009 (in Russian)
[17] V. I. Smirnov, Kurs Vysshey Matematiki, Part. 2, v. 3, Gosudarstvennoe izd-vo tekhniko-teoreticheskoy literatury, M., 1956 (in Russian)
[18] I. S. Gradshteyn, I. M. Ryzhik, Tablitsy Integralov, Summ, Ryadov i Proizvedeniy, 4nd Ed., Gosudarstvennoe izd-vo fiziko-matematicheskoy literatury, M., 1963 (in Russian) | MR