A Double Negation Operator in Logic $N^*$
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 4, pp. 68-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An axiomatization of double Routley negation operator as a necessity operator in logic $N^*$ is obtained. Logic $N^{\sharp}$ describing the behavior of double Routley negation operator is introduced, its Kripke semantics is defined, completeness wrt to this semantics is proved as well as its finite approximation property and decidability. Constructive properties of logics $N^*$ and $N^{\sharp}$ are compared.
Keywords: modal logic, intuitionistic logic, Kripke semantics, Routley negation, necessity, constructive properties.
@article{VNGU_2013_13_4_a4,
     author = {S. A. Drobyshevich},
     title = {A {Double} {Negation} {Operator} in {Logic} $N^*$},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {68--83},
     year = {2013},
     volume = {13},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2013_13_4_a4/}
}
TY  - JOUR
AU  - S. A. Drobyshevich
TI  - A Double Negation Operator in Logic $N^*$
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2013
SP  - 68
EP  - 83
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2013_13_4_a4/
LA  - ru
ID  - VNGU_2013_13_4_a4
ER  - 
%0 Journal Article
%A S. A. Drobyshevich
%T A Double Negation Operator in Logic $N^*$
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2013
%P 68-83
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2013_13_4_a4/
%G ru
%F VNGU_2013_13_4_a4
S. A. Drobyshevich. A Double Negation Operator in Logic $N^*$. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 4, pp. 68-83. http://geodesic.mathdoc.fr/item/VNGU_2013_13_4_a4/

[1] Cabalar P., Odintsov S. P., Pearce D., “Logical Foundations of Well-Founded Semantics”, Principles of Knowledge Representation and Reasoning, Proc. of the $10^\text{th}$ Int. Conf. (KR2006), eds. P. Doherty et al., AAAI Press, Menlo Park, California, 2006, 25–36

[2] Došen K., “Negation as a Modal Operator”, Reports on Mathematical Logic, 20 (1986), 15–28 | MR

[3] Wolter F., Zakharyaschev M., “Intuitionistic Modal Logics”, Logical Foundations of Mathematics, Synthese Library, eds. A. Cantini, E. Casari, P. Minari, Kluwer, 1999, 227–238 | MR | Zbl

[4] Sotirov V., “Modal Theories with Intuitionistic Logic”, Proc. of the Conf. Dedicated to the memory of A. A. Markov (1903–1979) (Sofia, September 22–23), Bulgarian Acad. of Sc., 1984, 139–171 | MR

[5] Vakarelov D., Theory of Negation in Certain Logical Systems: Algebraic and Semantical Approach, Ph. D. dissertation, University of Warsaw, 1976

[6] Vakarelov D., “Consistency, Completeness and Negation”, Paraconsistent Logics: Essays on the Inconsistent, eds. G. Priest, R. Routley, J. Norman, Filosophia, 1989, 328–363 | MR

[7] Vakarelov D., “The non-Classical Negation in the Works of Helena Rasiowa and their Impact on the Theory of Negation”, Studia Logica, 84 (2006), 105–127 | DOI | MR | Zbl

[8] Božić M., Došen K. K., “Models for Normal Intuitionistic Modal Logics”, Studia Logica, 43 (1984), 217–245 | DOI | MR | Zbl

[9] Došen K., “Negative Modal Operators in Intuitionistic Logic”, Publication de l'Instutute Mathematique, Nouv. Ser., 35 (1984), 3–14 | MR

[10] Routley R., Routley V., “The Semantics of First Degree Entailment”, Noûs, 6 (1972), 335–359 | MR

[11] Odintsov S. P., “Combining Intuitionistic Connectives and Routley Negation”, Siberian Electronic Mathematical Reports, 7 (2010), 21–41 | MR

[12] Sotirov V., “The Intuitionistic Double Negation is a Modality”, Abstracts of $7^\text{th}$ Int. Witgenstein Symp. (22–29 August 1982, Kircherg an Wechsel, Austria), 1982, 58

[13] Došen K., “Intuitionistic Double Negation as a Necessity Operator”, Publications de l'Institut Mathematique (N.S.), 35:49 (1984), 15–20 | MR | Zbl

[14] Božić M., Došen K., “Axiomatizations of Intuitionistic Double Negation”, Bull. of the Section of Logic. Polish Academy of Sciences, 12 (1983), 99–104 | MR

[15] Odintsov S. P., “Glivenko Theorem for $N^*$-Extension”, Siberian Electronic Mathematical Reports, 8 (2011), 365–368 | MR

[16] Drobyshevich S. A., Odintsov S. P., “Finite Model Property for Negative Modalities”, Siberian Electronic Mathematical Reports, 10 (2013), 1–21 | MR

[17] Drobyshevich S. A., “A Hybrid Calculus for Logic $N^*$: Residual Finiteness and Decidability”, Algebra and Logic, 50:3 (2011), 245–256 | DOI | MR | Zbl