Simulation of Engineering Systems in Permafrost
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 4, pp. 37-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new mathematical model is presented for describing thermal field around various underground engineering systems (sources of heat or cold) which are situated in permafrost. In the proposed model the main climatic and physical factors affecting the thermal field in the soil are taken into consideration. The results of numerical calculations for the developed model, that adapts to a geographic location by the specific algorithm taking into account the NASA climatic bases, are presented.
Keywords: heat transfer, permafrost, solar radiation, “cloud data technologies”.
Mots-clés : phase transition
@article{VNGU_2013_13_4_a2,
     author = {N. A. Vaganova and M. Yu. Filimonov},
     title = {Simulation of {Engineering} {Systems} in {Permafrost}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {37--42},
     year = {2013},
     volume = {13},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2013_13_4_a2/}
}
TY  - JOUR
AU  - N. A. Vaganova
AU  - M. Yu. Filimonov
TI  - Simulation of Engineering Systems in Permafrost
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2013
SP  - 37
EP  - 42
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2013_13_4_a2/
LA  - ru
ID  - VNGU_2013_13_4_a2
ER  - 
%0 Journal Article
%A N. A. Vaganova
%A M. Yu. Filimonov
%T Simulation of Engineering Systems in Permafrost
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2013
%P 37-42
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2013_13_4_a2/
%G ru
%F VNGU_2013_13_4_a2
N. A. Vaganova; M. Yu. Filimonov. Simulation of Engineering Systems in Permafrost. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 4, pp. 37-42. http://geodesic.mathdoc.fr/item/VNGU_2013_13_4_a2/

[1] Vl. V. Bashurov, N. A. Vaganova, M. Yu. Filimonov, “Numeriacal modelling for processes of heat exchange in ground with fluid filtration”, Vychislitel'nye Tekhnologii, 16:4 (2011), 3–19 (in Russian)

[2] A. A. Samarskiy, B. D. Moiseenko, “Economical through calculation scheme for the multidimensional Stefan problem”, Zh. Vych. Mat. i Mat. Fiz., 5:5 (1965), 816–827 (in Russian) | MR

[3] Samarsky A. A., Vabishchevich P. N., Computational Heat Transfer, v. 2, The Finite Difference Methodology, Wiley, N. Y.–Chichester, 1995

[4] N. A. Vaganova, “Existence of a solution of an initial-boundary value difference problem for a linear heat equation with a nonlinear boundary condition”, Trudy Inst. Mat. i Mekh. UrO RAN, 14, no. 1, 2008, 11–21 (in Russian)

[5] A. N. Cherepanov, V. P. Shapeev, V. M. Fomin, L. G. Semin, “Numerical simulation of thermal processes in the laser beam welding with forming a vapor channel”, Prikl. Mekh. i Tekhn. Fiz., 47:5 (2006), 88–96 (in Russian) | MR | Zbl

[6] V. P. Shapeev, A. N. Cherepanov, “Finite-difference algorithm for the numerical simulation for laser welding of metal plates”, Vych. Tekhnolog., 11:4 (2006), 102–117 (in Russian) | Zbl

[7] Filimonov M. Yu., Kravets A. G., Vaganova N. A., “Simulation of Thermal Interaction in a Zone of Extractive Well in Permafrost”, Proc. of APM-2010 (2010), 220–224