One-Dimensional Level Sets of $hc$-Differentiable Mappings of Carnot--Carath\'eodory Spaces
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 4, pp. 16-36

Voir la notice de l'article provenant de la source Math-Net.Ru

We study continuously $hc$-differentiable mappings from the Carnot–Carathéodory space $\mathcal{M}$ such that $\dim H_g \mathcal{M} = \dim T_g \mathcal{M} -1 = N$ in every $g \in \mathcal{M}$ into the Euclidean $N$-dimensional space with the property that $hc$-differential of the mapping is surjective. We establish that the level set of such mapping is a curve that has Hausdorff dimension 2 in sub-Riemannian metric. We obtain area formulas for curves of that kind.
Keywords: Carnot–Carathéodory space, level set.
@article{VNGU_2013_13_4_a1,
     author = {S. G. Basalaev},
     title = {One-Dimensional {Level} {Sets} of $hc${-Differentiable} {Mappings} of {Carnot--Carath\'eodory} {Spaces}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {16--36},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2013_13_4_a1/}
}
TY  - JOUR
AU  - S. G. Basalaev
TI  - One-Dimensional Level Sets of $hc$-Differentiable Mappings of Carnot--Carath\'eodory Spaces
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2013
SP  - 16
EP  - 36
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2013_13_4_a1/
LA  - ru
ID  - VNGU_2013_13_4_a1
ER  - 
%0 Journal Article
%A S. G. Basalaev
%T One-Dimensional Level Sets of $hc$-Differentiable Mappings of Carnot--Carath\'eodory Spaces
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2013
%P 16-36
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2013_13_4_a1/
%G ru
%F VNGU_2013_13_4_a1
S. G. Basalaev. One-Dimensional Level Sets of $hc$-Differentiable Mappings of Carnot--Carath\'eodory Spaces. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 4, pp. 16-36. http://geodesic.mathdoc.fr/item/VNGU_2013_13_4_a1/