Keywords: level set.
@article{VNGU_2013_13_4_a1,
author = {S. G. Basalaev},
title = {One-Dimensional {Level} {Sets} of $hc${-Differentiable} {Mappings} of {Carnot{\textendash}Carath\'eodory} {Spaces}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {16--36},
year = {2013},
volume = {13},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2013_13_4_a1/}
}
TY - JOUR AU - S. G. Basalaev TI - One-Dimensional Level Sets of $hc$-Differentiable Mappings of Carnot–Carathéodory Spaces JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2013 SP - 16 EP - 36 VL - 13 IS - 4 UR - http://geodesic.mathdoc.fr/item/VNGU_2013_13_4_a1/ LA - ru ID - VNGU_2013_13_4_a1 ER -
S. G. Basalaev. One-Dimensional Level Sets of $hc$-Differentiable Mappings of Carnot–Carathéodory Spaces. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 4, pp. 16-36. http://geodesic.mathdoc.fr/item/VNGU_2013_13_4_a1/
[1] Gromov M., “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian Geometry, Prog. Math., 144, Birkhäuser, Basel, 1996, 79–318 | MR
[2] Hörmander L., “Hypoelliptic Second Order Differential Equations”, Acta Math., 119 (1967), 147–171 | DOI | MR | Zbl
[3] Metivier G., “Fonction Spectrale et Valeurs Propres d'Une Classe d'Opérateurs non Elliptiques”, Commun. Partial Differential Equations, 1 (1976), 467–519 | DOI | MR | Zbl
[4] Rotchild L. P., Stein E. S., “Hypoelliptic Differential Operators and Nilpotent Groups”, Acta Math., 137 (1976), 247–320 | DOI | MR
[5] Karmanova M., Vodopyanov S., “Geometry of Carnot–Carathéodory Spaces, Differentiability and Coarea Formula”, Analysis and Mathematical Physics. Trends in Mathematics, Birkhäuser, Basel, 2009, 284–387 | MR
[6] S. K. Vodopyanov, A. V. Greshnov, “About differentiability of mappings in geometry of Carnot–Carathéodory spaces”, Doklady RAN, 389:5 (2003), 592–596 (in Russian) | MR
[7] Vodopyanov S. K., “Geometry of Carnot–Carathéodory Spaces and Differentiability of Mappings”, Contemporary Mathematics, 424, 2007, 247–302 | DOI | MR
[8] Darboux G., “Sur le Problème de Pfaff”, Bull. Sci. Math., 6 (1882), 14–36
[9] A. V. Greshnov, “Proof of Gromov's theorem about homogeneous nilpotent approximation for vector fields”, Matematicheskie Trudy, 15:2 (2012), 72–88 (in Russian) | MR
[10] Karmanova M., Vodopyanov S., “On Local Approximation Theorem on Equiregular Carnot–Carathéodory spaces”, Proceedings of “INDAM Meeting on Geometric Control and Sub-Riemannian Geometry” (Cortona, May 2012), Springer INdAM Series, 2013 (to appear)
[11] Basalaev S. G., Vodopyanov S. K., “Approximate Differentiability of Mappings of Carnot–Carathéodory Spaces”, Eurasian Math. J., 4:2 (2013) (to appear) | MR | Zbl
[12] Leonardi G. P., Magnani V., Intersections of Intrinsic Submanifolds in the Heisenberg Group, 2010, arXiv: 1009.5302 [math.AP] | MR
[13] Kozhevnikov A., Rugosité des Lignes de Niveau des Applications Différentiables sur le Groupe d'Heisenberg, 2011, arXiv: 1110.3634 [Math.MG]
[14] Nagel A., Stein E. M., Waigner S., “Balls and Metrics Defined by Vector Fields. I: Basic Properties”, Acta Math. (2), 155 (1985), 103–147 | DOI | MR | Zbl
[15] Mitchell J., “On Carnot–Carathéodory Metrics”, J. Differential Geometry, 21 (1985), 35–45 | MR | Zbl
[16] M. M. Postnikov, Lectures on Geometry. Term V: Groups and Lie Algebras, Nauka, M., 1982 (in Russian) | MR
[17] Bonfiglioli A., Lanconelli E., Uguzonni F., Stratified Lie Groups and Potential Theory for their Sub-Laplasians, Springer Monographs in Mathematics, Springer-Verlag, Berlin–Heidelberg, 2007 | MR | Zbl