One-Dimensional Level Sets of $hc$-Differentiable Mappings of Carnot–Carathéodory Spaces
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 4, pp. 16-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study continuously $hc$-differentiable mappings from the Carnot–Carathéodory space $\mathcal{M}$ such that $\dim H_g \mathcal{M} = \dim T_g \mathcal{M} -1 = N$ in every $g \in \mathcal{M}$ into the Euclidean $N$-dimensional space with the property that $hc$-differential of the mapping is surjective. We establish that the level set of such mapping is a curve that has Hausdorff dimension 2 in sub-Riemannian metric. We obtain area formulas for curves of that kind.
Mots-clés : Carnot–Carathéodory space
Keywords: level set.
@article{VNGU_2013_13_4_a1,
     author = {S. G. Basalaev},
     title = {One-Dimensional {Level} {Sets} of $hc${-Differentiable} {Mappings} of {Carnot{\textendash}Carath\'eodory} {Spaces}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {16--36},
     year = {2013},
     volume = {13},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2013_13_4_a1/}
}
TY  - JOUR
AU  - S. G. Basalaev
TI  - One-Dimensional Level Sets of $hc$-Differentiable Mappings of Carnot–Carathéodory Spaces
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2013
SP  - 16
EP  - 36
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2013_13_4_a1/
LA  - ru
ID  - VNGU_2013_13_4_a1
ER  - 
%0 Journal Article
%A S. G. Basalaev
%T One-Dimensional Level Sets of $hc$-Differentiable Mappings of Carnot–Carathéodory Spaces
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2013
%P 16-36
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2013_13_4_a1/
%G ru
%F VNGU_2013_13_4_a1
S. G. Basalaev. One-Dimensional Level Sets of $hc$-Differentiable Mappings of Carnot–Carathéodory Spaces. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 4, pp. 16-36. http://geodesic.mathdoc.fr/item/VNGU_2013_13_4_a1/

[1] Gromov M., “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian Geometry, Prog. Math., 144, Birkhäuser, Basel, 1996, 79–318 | MR

[2] Hörmander L., “Hypoelliptic Second Order Differential Equations”, Acta Math., 119 (1967), 147–171 | DOI | MR | Zbl

[3] Metivier G., “Fonction Spectrale et Valeurs Propres d'Une Classe d'Opérateurs non Elliptiques”, Commun. Partial Differential Equations, 1 (1976), 467–519 | DOI | MR | Zbl

[4] Rotchild L. P., Stein E. S., “Hypoelliptic Differential Operators and Nilpotent Groups”, Acta Math., 137 (1976), 247–320 | DOI | MR

[5] Karmanova M., Vodopyanov S., “Geometry of Carnot–Carathéodory Spaces, Differentiability and Coarea Formula”, Analysis and Mathematical Physics. Trends in Mathematics, Birkhäuser, Basel, 2009, 284–387 | MR

[6] S. K. Vodopyanov, A. V. Greshnov, “About differentiability of mappings in geometry of Carnot–Carathéodory spaces”, Doklady RAN, 389:5 (2003), 592–596 (in Russian) | MR

[7] Vodopyanov S. K., “Geometry of Carnot–Carathéodory Spaces and Differentiability of Mappings”, Contemporary Mathematics, 424, 2007, 247–302 | DOI | MR

[8] Darboux G., “Sur le Problème de Pfaff”, Bull. Sci. Math., 6 (1882), 14–36

[9] A. V. Greshnov, “Proof of Gromov's theorem about homogeneous nilpotent approximation for vector fields”, Matematicheskie Trudy, 15:2 (2012), 72–88 (in Russian) | MR

[10] Karmanova M., Vodopyanov S., “On Local Approximation Theorem on Equiregular Carnot–Carathéodory spaces”, Proceedings of “INDAM Meeting on Geometric Control and Sub-Riemannian Geometry” (Cortona, May 2012), Springer INdAM Series, 2013 (to appear)

[11] Basalaev S. G., Vodopyanov S. K., “Approximate Differentiability of Mappings of Carnot–Carathéodory Spaces”, Eurasian Math. J., 4:2 (2013) (to appear) | MR | Zbl

[12] Leonardi G. P., Magnani V., Intersections of Intrinsic Submanifolds in the Heisenberg Group, 2010, arXiv: 1009.5302 [math.AP] | MR

[13] Kozhevnikov A., Rugosité des Lignes de Niveau des Applications Différentiables sur le Groupe d'Heisenberg, 2011, arXiv: 1110.3634 [Math.MG]

[14] Nagel A., Stein E. M., Waigner S., “Balls and Metrics Defined by Vector Fields. I: Basic Properties”, Acta Math. (2), 155 (1985), 103–147 | DOI | MR | Zbl

[15] Mitchell J., “On Carnot–Carathéodory Metrics”, J. Differential Geometry, 21 (1985), 35–45 | MR | Zbl

[16] M. M. Postnikov, Lectures on Geometry. Term V: Groups and Lie Algebras, Nauka, M., 1982 (in Russian) | MR

[17] Bonfiglioli A., Lanconelli E., Uguzonni F., Stratified Lie Groups and Potential Theory for their Sub-Laplasians, Springer Monographs in Mathematics, Springer-Verlag, Berlin–Heidelberg, 2007 | MR | Zbl