On the Geometrically Complete Varieties of Algebras
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 3, pp. 90-95

Voir la notice de l'article provenant de la source Math-Net.Ru

The variety of algebras we define as geometrically complete if all its nonuanelemente algebras are geometrically complete. In the work given some criterions of geometrically complitnes of varieties.
Keywords: geometrically complitnes of varieties of algebras, minimal varieties, quazivarieties, strongly simple algebras, semisimple varieties.
@article{VNGU_2013_13_3_a7,
     author = {A. G. Pinus},
     title = {On the {Geometrically} {Complete} {Varieties} of {Algebras}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {90--95},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2013_13_3_a7/}
}
TY  - JOUR
AU  - A. G. Pinus
TI  - On the Geometrically Complete Varieties of Algebras
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2013
SP  - 90
EP  - 95
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2013_13_3_a7/
LA  - ru
ID  - VNGU_2013_13_3_a7
ER  - 
%0 Journal Article
%A A. G. Pinus
%T On the Geometrically Complete Varieties of Algebras
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2013
%P 90-95
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2013_13_3_a7/
%G ru
%F VNGU_2013_13_3_a7
A. G. Pinus. On the Geometrically Complete Varieties of Algebras. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 3, pp. 90-95. http://geodesic.mathdoc.fr/item/VNGU_2013_13_3_a7/