On the Geometrically Complete Varieties of Algebras
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 3, pp. 90-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The variety of algebras we define as geometrically complete if all its nonuanelemente algebras are geometrically complete. In the work given some criterions of geometrically complitnes of varieties.
Keywords: geometrically complitnes of varieties of algebras, minimal varieties, quazivarieties, strongly simple algebras, semisimple varieties.
@article{VNGU_2013_13_3_a7,
     author = {A. G. Pinus},
     title = {On the {Geometrically} {Complete} {Varieties} of {Algebras}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {90--95},
     year = {2013},
     volume = {13},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2013_13_3_a7/}
}
TY  - JOUR
AU  - A. G. Pinus
TI  - On the Geometrically Complete Varieties of Algebras
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2013
SP  - 90
EP  - 95
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2013_13_3_a7/
LA  - ru
ID  - VNGU_2013_13_3_a7
ER  - 
%0 Journal Article
%A A. G. Pinus
%T On the Geometrically Complete Varieties of Algebras
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2013
%P 90-95
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2013_13_3_a7/
%G ru
%F VNGU_2013_13_3_a7
A. G. Pinus. On the Geometrically Complete Varieties of Algebras. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 3, pp. 90-95. http://geodesic.mathdoc.fr/item/VNGU_2013_13_3_a7/

[1] Plotkin B. I., “Nekotorye ponyatiya algebraicheskoi geometrii v universalnoi algebre”, Algebra i analiz, 9:4 (1997), 224–248 | MR | Zbl

[2] Plotkin B. I., “Problemy algebry, inspirirovannye universalnoi algebraicheskoi geometriei”, Fundamentalnaya i prikladnaya matematika, 10:3 (2004), 181–197 | MR | Zbl

[3] Pinus A. G., “Geometricheskie shkaly mnogoobrazii algebr i kvazitozhdestva”, Matematicheskie trudy, 12:2 (2009), 160–169 | MR | Zbl

[4] Bludov V. V., Gusev B. V., “Geometricheskaya ekvivalentnost grupp”, Tr. Instituta matematiki i mekhaniki UrO RAN, 13, no. 1, 2007, 56–77

[5] Bergman C., McKenzie R., “Minimal Varieties and Quasivarieties”, J. of the Austral. Math. Soc., Serie A, 48:1 (1990), 133–147 | DOI | MR | Zbl

[6] Astromoff A., “Some Structure Theorems for Primal and Categorical Algebras”, Math. Z., 87 (1965), 365–377 | DOI | MR | Zbl

[7] Magari R., “Una Dimonstrazione del Fatto che ogni Varieta Ammehte Algebra Semplici”, Ann. Univ. Ferrara. Sez. VII, 14 (1969), 1–4 | MR