Residues and Elementary Prym Differentials on the Compact Riemann Surface
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 2, pp. 99-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper are obtained new results on the theory of multiplicative functions and Prym differentials on a variable compact Riemann surfaces of genus $g>1$. For the first time full sum residues theorems are obtained for Prym differentials for every integer order. As a corollary reciprocity laws and existence theorems for Prym differentials with given poles and residues are proven. All kinds of elementary Prym differentials, which holomorphically depend on modules of surfaces and characters are constructed. Analogues of Appell's decomposition formula for functions with characters are proven.
Keywords: Compact Riemann surfaces, Prym differentials, characters.
Mots-clés : Teichmueller spaces
@article{VNGU_2013_13_2_a9,
     author = {T. A. Pushkareva},
     title = {Residues and {Elementary} {Prym} {Differentials} on the {Compact} {Riemann} {Surface}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {99--118},
     year = {2013},
     volume = {13},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a9/}
}
TY  - JOUR
AU  - T. A. Pushkareva
TI  - Residues and Elementary Prym Differentials on the Compact Riemann Surface
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2013
SP  - 99
EP  - 118
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a9/
LA  - ru
ID  - VNGU_2013_13_2_a9
ER  - 
%0 Journal Article
%A T. A. Pushkareva
%T Residues and Elementary Prym Differentials on the Compact Riemann Surface
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2013
%P 99-118
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a9/
%G ru
%F VNGU_2013_13_2_a9
T. A. Pushkareva. Residues and Elementary Prym Differentials on the Compact Riemann Surface. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 2, pp. 99-118. http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a9/

[1] Appell P., “Sur les Integrales de Fonctions a Multiplicateurs et leur Application an Developpement des Fonctions Abeliennes en Series Trigonometriques”, Acta Math., 13:3/4 (1890), 1–174

[2] Farkas H. M., Kra I., Riemann Surfaces, Grad. Text's Math., 71, Springer, N.Y., 1992 | DOI | MR | Zbl

[3] Chueshev V. V., Multiplikativnye funktsii i differentsialy Prima na peremennoi kompaktnoi rimanovoi poverkhnosti, v. 2, Kemerovo, 2003

[4] Golovina M. I., “Divizory differentsialov Prima na rimanovoi poverkhnosti”, Tr. mezhdunar. shkoly-konferentsii po geometrii i analizu, Vestnik KemGU, no. 3/1, 2011, 193–198

[5] Monakhov V. N., Semenko E. V., Kraevye zadachi psevdodifferentsialnykh operatorov na rimanovykh poverkhnostyakh, Fizmatlit, M., 2003

[6] Alfors L., Bers L., Prostranstva rimanovykh poverkhnostei i kvazikonformnye otobrazheniya, IL, M., 1961

[7] Earle C. J., “Families of Riemann Surfaces and Jacobi Varieties”, Annals of Mathematics, 107 (1978), 255–286 | DOI | MR | Zbl