Residues and Elementary Prym Differentials on the Compact Riemann Surface
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 2, pp. 99-118

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper are obtained new results on the theory of multiplicative functions and Prym differentials on a variable compact Riemann surfaces of genus $g>1$. For the first time full sum residues theorems are obtained for Prym differentials for every integer order. As a corollary reciprocity laws and existence theorems for Prym differentials with given poles and residues are proven. All kinds of elementary Prym differentials, which holomorphically depend on modules of surfaces and characters are constructed. Analogues of Appell's decomposition formula for functions with characters are proven.
Keywords: Compact Riemann surfaces, Prym differentials, characters.
Mots-clés : Teichmueller spaces
@article{VNGU_2013_13_2_a9,
     author = {T. A. Pushkareva},
     title = {Residues and {Elementary} {Prym} {Differentials} on the {Compact} {Riemann} {Surface}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {99--118},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a9/}
}
TY  - JOUR
AU  - T. A. Pushkareva
TI  - Residues and Elementary Prym Differentials on the Compact Riemann Surface
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2013
SP  - 99
EP  - 118
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a9/
LA  - ru
ID  - VNGU_2013_13_2_a9
ER  - 
%0 Journal Article
%A T. A. Pushkareva
%T Residues and Elementary Prym Differentials on the Compact Riemann Surface
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2013
%P 99-118
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a9/
%G ru
%F VNGU_2013_13_2_a9
T. A. Pushkareva. Residues and Elementary Prym Differentials on the Compact Riemann Surface. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 2, pp. 99-118. http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a9/