The Method of Penalty Function in One Problem of Optimal Control with Phase Constraint
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 2, pp. 86-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem solving optimal control problems with state constraints, by replacing the phase constraint penalty function in the target functional. Was established the existance of optimal control in this problem and prove the convergence of state variables and control for an indefinite increase of the penalty coefficient.
Keywords: optimal control, chemical reactor, functional, differential equations, penalty function.
Mots-clés : existence solution
@article{VNGU_2013_13_2_a8,
     author = {K. S. Musabekov},
     title = {The {Method} of {Penalty} {Function} in {One} {Problem} of {Optimal} {Control} with {Phase} {Constraint}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {86--98},
     year = {2013},
     volume = {13},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a8/}
}
TY  - JOUR
AU  - K. S. Musabekov
TI  - The Method of Penalty Function in One Problem of Optimal Control with Phase Constraint
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2013
SP  - 86
EP  - 98
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a8/
LA  - ru
ID  - VNGU_2013_13_2_a8
ER  - 
%0 Journal Article
%A K. S. Musabekov
%T The Method of Penalty Function in One Problem of Optimal Control with Phase Constraint
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2013
%P 86-98
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a8/
%G ru
%F VNGU_2013_13_2_a8
K. S. Musabekov. The Method of Penalty Function in One Problem of Optimal Control with Phase Constraint. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 2, pp. 86-98. http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a8/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961 | Zbl

[2] Dubovitskii A. Ya., Milyutin A. A., “Zadachi na ekstremum pri nalichii ogranichenii”, Zhurn. vychisl. matematiki i mat. fiziki, 5:3 (1965), 395–453

[3] Fiako A., Mak-Kormik G., Nelineinoe programmirovanie. Metody posledovatelnoi bezuslovnoi minimizatsii, Mir, M., 1972 | MR

[4] Grossman K., Kaplan A. A., Nelineinoe programmirovanie na osnove bezuslovnoi minimizatsii, Nauka, Novosibirsk, 1981 | Zbl

[5] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980 | MR

[6] Lions Zh. L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR

[7] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR

[8] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[9] Belonosov V. S., Zelenyak T. I., Nelokalnye problemy v teorii kvazilineinykh parabolicheskikh uravnenii, Novosibirsk, 1975 | MR

[10] Musabekov K. S., “Suschestvovanie optimalnogo upravleniya v odnoi regulyarizovannoi zadache s fazovym ogranicheniem”, Vestn. Novosib. gos. un-ta. Seriya: Matematika, mekhanika, informatika, 10:2 (2010), 54–67 | MR

[11] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR

[12] Georgakis C., Aris R., Amundson N. R., “Studies in the Control of Tubular Reactors”, Chemical Engineering Sience, 32:11 (1977), 1359–1387 | DOI