List Superstructures and the Semantics of Iterators
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 2, pp. 61-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper the semantics of iterators as an abstract data type is considered — on the basis of the list superstructure theory (GES). An iterator is the key component of the iterational language Libretto, and, thus, the results presented in this paper pave the way for the construction of the comprehensive Libretto's logical semantics. The methods developed in this paper also can be applied to the development of logical semantics of information structures based on GES.
Keywords: iterator, semantics, list superstructure.
Mots-clés : Libretto
@article{VNGU_2013_13_2_a6,
     author = {A. A. Malykh and V. P. Mantsivoda},
     title = {List {Superstructures} and the {Semantics} of {Iterators}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {61--78},
     year = {2013},
     volume = {13},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a6/}
}
TY  - JOUR
AU  - A. A. Malykh
AU  - V. P. Mantsivoda
TI  - List Superstructures and the Semantics of Iterators
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2013
SP  - 61
EP  - 78
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a6/
LA  - ru
ID  - VNGU_2013_13_2_a6
ER  - 
%0 Journal Article
%A A. A. Malykh
%A V. P. Mantsivoda
%T List Superstructures and the Semantics of Iterators
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2013
%P 61-78
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a6/
%G ru
%F VNGU_2013_13_2_a6
A. A. Malykh; V. P. Mantsivoda. List Superstructures and the Semantics of Iterators. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 2, pp. 61-78. http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a6/

[1] Goncharov S. S., Sviridenko D. I., “$\Sigma$-programmirovanie”, Logiko-matematicheskie problemy MOZ, Vychislitelnye sistemy, 107, Novosibirsk, 1985, 3–29 | MR | Zbl

[2] Ershov Yu. L., Goncharov S. S., Sviridenko D. I., “Semantic Programming”, Information processing, Proc. IFIP $10^\text{th}$ World Comput. Congress (Dublin, 1986), IFIP congress series, 10, 1093–1100 | MR

[3] Malykh A., Mantsivoda A., “A Query Language for Logic Architectures”, Perspectives of System Informatics, Proc. of $7^\text{th}$ Int. Conf., Lecture Notes in Computer Science, 5947, Springer-Verlag, Berlin–Heidelberg, 2010, 294–305 | DOI | Zbl

[4] Ob'ektno-iteratsionnyi yazyk Libretto http://ontobox.org

[5] Malykh A. A., Mantsivoda A. V., Ulyanov V. S., “Logicheskie arkhitektury i ob'ektno-orientirovannyi podkhod”, Vestn. Novosib. gos. un-ta. Seriya: Matematika, mekhanika, informatika, 9:3 (2009), 64–85 | Zbl

[6] Dechter R., Constraint Processing, Morgan Kaufmann, 2003

[7] Mantsivoda A. V., $\Sigma$-programmirovanie i problemy diskretnoi optimizatsii, Irkutsk, 1994

[8] Goncharov S. S., “Zamechanie ob aksiomakh spisochnoi nadstroiki GES”, Logicheskie voprosy teorii tipov dannykh, Vychislitelnye sistemy, 114, Novosibirsk, 1986, 11–15 | MR | Zbl

[9] Gavryushkina A. A., “Teoriya spiskov i $\Sigma$-opredelimost”, Izv. IGU. Seriya: Matematika, 2011, no. 4, 27–39

[10] Makkai M., “Dopustimye mnozhestva i beskonechnaya logika”, Spravochnaya kniga po matematicheskoi logike, v. 1, ed. Dzh. Barvais, Nauka, M., 1982, 235–288

[11] Kokorin A. I., Kopytov V. M., Lineino uporyadochennye gruppy, Nauka, M., 1972 | MR | Zbl

[12] Baader F., The Description Logic Handbook: Theory, Implementation, Applications, eds. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-Schneider, Cambridge, 2003, 574 pp. | MR