Triviality of function $\omega_2$ for spatial complete graphs
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 2, pp. 51-60
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $G_n$, $n\geqslant 6$, be a complete spatial graph with $n$ vertices. In 1983 J. Y. Conway and C. McA. Gordon introduced function $\omega_2$ for all such graphs with 6 vertices. They proved that $\omega_2(G_6) = 1$ for any spatial graph $G_6$, and hence any such graph contains non-trivial link. In present work we prove that $\omega_2(G_n) = 0$ for any spatial complete graph $G_n$ with $n\geqslant 7$ vertices.
Mots-clés :
spatial graph
Keywords: hamiltonian set of circles, link, complete graph.
Keywords: hamiltonian set of circles, link, complete graph.
@article{VNGU_2013_13_2_a5,
author = {A. A. Kazakov and Ph. G. Korablev},
title = {Triviality of function $\omega_2$ for spatial complete graphs},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {51--60},
year = {2013},
volume = {13},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a5/}
}
TY - JOUR AU - A. A. Kazakov AU - Ph. G. Korablev TI - Triviality of function $\omega_2$ for spatial complete graphs JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2013 SP - 51 EP - 60 VL - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a5/ LA - ru ID - VNGU_2013_13_2_a5 ER -
A. A. Kazakov; Ph. G. Korablev. Triviality of function $\omega_2$ for spatial complete graphs. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 2, pp. 51-60. http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a5/
[1] Conway J. H., Gordon C. McA., “Knots and Links in Spatial Graphs”, J. of Graph Theory, 7 (1983), 445–453 | DOI | MR | Zbl
[2] Vesnin A. Yu., Litvintseva A. V., “O zatseplennosti gamiltonovykh par tsiklov v prostranstvennykh grafakh”, Sibirskie elektronnye matematicheskie izvestiya, 7 (2010), 383–393 | MR
[3] Bowlin G., Blain P., Foisy J., Hendricks J., LaCombe J., “Knotted Hamiltonian Cycles in Spatial Embeddings of Complete Graphs”, New York J. of Math., 13 (2007), 11–16 | MR | Zbl
[4] Foisy J., “Corrigendum to “Knotted Hamiltonian Cycles in Spatial Embeddings of Complete Graphs””, New York J. of Math., 14 (2008), 285–287 | MR | Zbl