Singular Points and First Integrals of Holomorphic Dynamical Systems
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 2, pp. 28-44

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the complex system $\dot z=F(z)$ near the singular point which is a multiple zero or a pole of the function $F(z)$ on the phase plane. We consider trajectories of such systems at infinity. We construct first integrals of polynomial systems using the method of Darboux. We use our results to sketch phase portraits.
Keywords: nonhyperbolic singular points, separatrices, elliptic sectors, hyperbolic sectors, first integrals.
@article{VNGU_2013_13_2_a3,
     author = {E. P. Volokitin and V. M. Cheresiz},
     title = {Singular {Points} and {First} {Integrals} of {Holomorphic} {Dynamical} {Systems}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {28--44},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a3/}
}
TY  - JOUR
AU  - E. P. Volokitin
AU  - V. M. Cheresiz
TI  - Singular Points and First Integrals of Holomorphic Dynamical Systems
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2013
SP  - 28
EP  - 44
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a3/
LA  - ru
ID  - VNGU_2013_13_2_a3
ER  - 
%0 Journal Article
%A E. P. Volokitin
%A V. M. Cheresiz
%T Singular Points and First Integrals of Holomorphic Dynamical Systems
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2013
%P 28-44
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a3/
%G ru
%F VNGU_2013_13_2_a3
E. P. Volokitin; V. M. Cheresiz. Singular Points and First Integrals of Holomorphic Dynamical Systems. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 2, pp. 28-44. http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a3/