Singular Points and First Integrals of Holomorphic Dynamical Systems
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 2, pp. 28-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the complex system $\dot z=F(z)$ near the singular point which is a multiple zero or a pole of the function $F(z)$ on the phase plane. We consider trajectories of such systems at infinity. We construct first integrals of polynomial systems using the method of Darboux. We use our results to sketch phase portraits.
Keywords: nonhyperbolic singular points, separatrices, elliptic sectors, hyperbolic sectors, first integrals.
@article{VNGU_2013_13_2_a3,
     author = {E. P. Volokitin and V. M. Cheresiz},
     title = {Singular {Points} and {First} {Integrals} of {Holomorphic} {Dynamical} {Systems}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {28--44},
     year = {2013},
     volume = {13},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a3/}
}
TY  - JOUR
AU  - E. P. Volokitin
AU  - V. M. Cheresiz
TI  - Singular Points and First Integrals of Holomorphic Dynamical Systems
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2013
SP  - 28
EP  - 44
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a3/
LA  - ru
ID  - VNGU_2013_13_2_a3
ER  - 
%0 Journal Article
%A E. P. Volokitin
%A V. M. Cheresiz
%T Singular Points and First Integrals of Holomorphic Dynamical Systems
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2013
%P 28-44
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a3/
%G ru
%F VNGU_2013_13_2_a3
E. P. Volokitin; V. M. Cheresiz. Singular Points and First Integrals of Holomorphic Dynamical Systems. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 2, pp. 28-44. http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a3/

[1] Gregor J., “Dynamické systémy s Regulární Pravou Stranou, I”, Pokroky Matematiky, Fyziky a Astronomie, 3:2 (1958), 153–160 | Zbl

[2] Lukashevich N. A., “Izokhronnost tsentra nekotorykh sistem differentsialnykh uravnenii”, Differentsialnye uravneniya, 1:3 (1965), 295–302

[3] Christopher C. J., Devlin J., “Isochronous Centers in Planar Polynomial Systems”, SIAM J. Math. Anal., 28:1 (1997), 162–177 | DOI | MR | Zbl

[4] Gavrilov N. I., Metody teorii obyknovennykh differentsialnykh uravnenii, Vysshaya shkola, M., 1962 | MR | Zbl

[5] Mischenko A. S., Fomenko A. T., Kurs differentsialnoi geometrii i topologii, Uchebnik, Izd-vo MGU, M., 1980

[6] Krasnoselskii M. A. i dr., Vektornye polya na ploskosti, Fizmatgiz, M., 1963 | MR

[7] Llibre J., Medrado J. C., “Darboux Integrability and Reversible Quadratic Vector Fields”, Rocky Mountain J. Math., 35:6 (2005), 1999–2057 | DOI | MR | Zbl

[8] Coll B., Ferragut A., Llibre J., “Phase Portraits of the Quadratic Systems with a Polynomial Inverse Integraiting Factor”, International J. of Bifurcation and Chaos, 19:3 (2009), 765–783 | DOI | MR | Zbl

[9] Andronov A. A. i dr., Teoriya bifurkatsii dinamicheskikh sistem na ploskosti, Nauka, M., 1967

[10] Mardesic P., Rousseau C., Toni B., “Linearization of Isochronous Centers”, J. of Differential Equations, 121:1 (1995), 67–108 | DOI | MR | Zbl

[11] Polia G., Sege G., Zadachi i teoremy iz analiza, v. 2, Gostekhizdat, M., 1956

[12] Volokitin E. P., Ivanov V. V., “Izokhronnost i kommutiruemost polinomialnykh vektornykh polei”, Sib. mat. zhurn., 40:1 (1999), 30–48 | MR | Zbl

[13] Villarini M., “Regularity Properties of the Period Function Near a Center of a Planar Vector Field”, Nonlinear Anal., 19:8 (1992), 787–803 | DOI | MR | Zbl

[14] Darboux J. G., “Mémoire sur les Équations Différentielles Algébriques du Premier Ordre et du Premier Degré (Mélanges)”, Bull. Sci. Math., 32 (1878), 60–96; 123–144 ; 151–200 | Zbl

[15] Christopher C., “Invariant Algebraic Curves and Conditions for a Centre”, Proc. R. Soc. Edinb. Sect. A, 124 (1994), 1209–1229 | DOI | MR | Zbl

[16] Garcia I. A., Grau M., “A Survey on the Inverse Integrating Factor”, Qualitative Theory of Dynamical Systems, 9 (2010), 115–166 | DOI | MR | Zbl