Singular Points and First Integrals of Holomorphic Dynamical Systems
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 2, pp. 28-44
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the complex system $\dot z=F(z)$ near the singular point which is a multiple zero or a pole of the function $F(z)$ on the phase plane. We consider trajectories of such systems at infinity. We construct first integrals of polynomial systems using the method of Darboux. We use our results to sketch phase portraits.
Keywords:
nonhyperbolic singular points, separatrices, elliptic sectors, hyperbolic sectors, first integrals.
@article{VNGU_2013_13_2_a3,
author = {E. P. Volokitin and V. M. Cheresiz},
title = {Singular {Points} and {First} {Integrals} of {Holomorphic} {Dynamical} {Systems}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {28--44},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a3/}
}
TY - JOUR AU - E. P. Volokitin AU - V. M. Cheresiz TI - Singular Points and First Integrals of Holomorphic Dynamical Systems JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2013 SP - 28 EP - 44 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a3/ LA - ru ID - VNGU_2013_13_2_a3 ER -
E. P. Volokitin; V. M. Cheresiz. Singular Points and First Integrals of Holomorphic Dynamical Systems. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 2, pp. 28-44. http://geodesic.mathdoc.fr/item/VNGU_2013_13_2_a3/