Fictitious domain method in the equilibrium problem for a Timoshenko-type plate contacting with a rigid obstacle
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 1, pp. 91-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the nonlinear equilibrium problem for the plate with the Signorini condition on the part of the boundary. We construct a family of auxiliary problems defined in an extended domain so that their solutions converge properly to a solution of the Signorini problem. Each problem of this family describes the equilibrium of the plate with a crack. On the curve defining the crack we impose a boundary condition of an inequality type describing the non-penetration of opposite crack edges. Equivalent differential formulation of the problems is found.
Keywords: Signorini boundary conditions, fictitious domain, mutual non-penetration condition, Timoshenko-type plate, crack.
@article{VNGU_2013_13_1_a8,
     author = {N. P. Lazarev},
     title = {Fictitious domain method in the equilibrium problem for {a~Timoshenko-type} plate contacting with a~rigid obstacle},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {91--104},
     year = {2013},
     volume = {13},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a8/}
}
TY  - JOUR
AU  - N. P. Lazarev
TI  - Fictitious domain method in the equilibrium problem for a Timoshenko-type plate contacting with a rigid obstacle
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2013
SP  - 91
EP  - 104
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a8/
LA  - ru
ID  - VNGU_2013_13_1_a8
ER  - 
%0 Journal Article
%A N. P. Lazarev
%T Fictitious domain method in the equilibrium problem for a Timoshenko-type plate contacting with a rigid obstacle
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2013
%P 91-104
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a8/
%G ru
%F VNGU_2013_13_1_a8
N. P. Lazarev. Fictitious domain method in the equilibrium problem for a Timoshenko-type plate contacting with a rigid obstacle. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 1, pp. 91-104. http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a8/

[1] Stepanov V. D., Khludnev A. M., “Metod fiktivnykh oblastei v zadache Sinorini”, Sib. mat. zhurn., 44:6 (2003), 1350–1364 | MR | Zbl

[2] Alekseev G. V., Khludnev A. M., “Treschina v uprugom tele, vykhodyaschaya na granitsu pod nulevym uglom”, Vestn. Novosib. gos. un-ta. Seriya: Matematika, mekhanika, informatika, 9:2 (2009), 15–29 | Zbl

[3] Andersson L.-E., Khludnev A. M., “Treschina, vykhodyaschaya na kontaktnuyu granitsu. Metod fiktivnykh oblastei i invariantnye integraly”, Sib. zhurn. industr. mat., 11:3 (2008), 15–29 | MR | Zbl

[4] Vabischevich P. V., Metod fiktivnykh oblastei v zadachakh matematicheskoi fiziki, Izd-vo MGU, M., 1991

[5] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010

[6] Khludnev A. M., Kovtunenko V. A., Tani A., “Evolution of a Crack with Kink and Non-Penetration”, J. Math. Soc. Japan, 60:4 (2008), 1219–1253 | DOI | MR | Zbl

[7] Rudoi E. M., “Differentsirovanie funktsionalov energii v zadache o krivolineinoi treschine s vozmozhnym kontaktom beregov”, Izv. RAN. Mekh. tverd. tela, 2007, no. 6, 113–127

[8] Lazarev N. P., “Iteratsionnyi metod shtrafa dlya nelineinoi zadachi o ravnovesii plastiny Timoshenko, soderzhaschei treschinu”, Sib. zhurn. vychisl. matem., 14:4 (2011), 381–396 | MR

[9] Kosmodamianskii A. C., Shaldyrvan V. A., Tolstye mnogosvyaznye plastiny, Nauk. dum., Kiev, 1978 | MR

[10] Pelekh B. L., Teoriya obolochek s konechnoi sdvigovoi zhestkostyu, Nauk. dum., Kiev, 1973 | Zbl

[11] Temam R., Matematicheskie zadachi teorii plastichnosti, Nauka, M., 1991 | MR | Zbl