Numerical methods of interpolation for the solution of some problems of the convex geometry in Lobachevsky's space
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 1, pp. 76-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Convex surfaces in Lobachevsky's space correspond to conformally flat metrics of the bounded curvature. Convex polyhedrons are the most important convex sets in the practical relation. In this paper the corresponding conformally flat metrics are studied, and numerical algorithms for the construction of such metrics are considered in details.
Keywords: conformally flat metrics, convex polyhedrons in Lobachevsky's space.
Mots-clés : interpolation
@article{VNGU_2013_13_1_a7,
     author = {M. V. Kurkina and E. D. Rodionov and V. V. Slavsky},
     title = {Numerical methods of interpolation for the solution of some problems of the convex geometry in {Lobachevsky's} space},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {76--90},
     year = {2013},
     volume = {13},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a7/}
}
TY  - JOUR
AU  - M. V. Kurkina
AU  - E. D. Rodionov
AU  - V. V. Slavsky
TI  - Numerical methods of interpolation for the solution of some problems of the convex geometry in Lobachevsky's space
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2013
SP  - 76
EP  - 90
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a7/
LA  - ru
ID  - VNGU_2013_13_1_a7
ER  - 
%0 Journal Article
%A M. V. Kurkina
%A E. D. Rodionov
%A V. V. Slavsky
%T Numerical methods of interpolation for the solution of some problems of the convex geometry in Lobachevsky's space
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2013
%P 76-90
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a7/
%G ru
%F VNGU_2013_13_1_a7
M. V. Kurkina; E. D. Rodionov; V. V. Slavsky. Numerical methods of interpolation for the solution of some problems of the convex geometry in Lobachevsky's space. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 1, pp. 76-90. http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a7/

[1] Aleksandrov A. D., Berestovskii V. N., Nikolaev I. G., “Obobschennye rimanovy prostranstva”, Uspekhi mat. nauk, 41:3 (1986), 3–44 | MR | Zbl

[2] Reshetnyak Yu. G., “Izotermicheskie koordinaty v mnogoobraziyakh ogranichennoi krivizny. I”, Sib. mat. zhurn., 1:1 (1960), 88–116 | MR | Zbl

[3] Reshetnyak Yu. G., “Izotermicheskie koordinaty v mnogoobraziyakh ogranichennoi krivizny. II”, Sib. mat. zhurn., 1:2 (1960), 248–276 | Zbl

[4] Slavskii V. V., “Konformno ploskie metriki ogranichennoi krivizny na $n$-mernoi sfere”, Issledovaniya po geometrii “v tselom” i matematicheskomu analizu, 9, Nauka, Novosibirsk, 1987, 183–199 | MR

[5] Slavskii V. V., “Conformally Flat Metrics and the Geometry of the Pseudo-Euclidean Space”, Siberian Math. J., 35:3 (1994), 605–613 | DOI | MR | Zbl

[6] Slavskii V. V., Konformno-ploskie metriki i psevdoevklidovo prostranstvo, Avtoref. dis. $\dots$ d-ra fiz.-mat. nauk, Novosibirsk, 2000

[7] Balaschenko V. V., Nikonorov Yu. G., Rodionov E. D., Slavskii V. V., Odnorodnye prostranstva: teoriya i prilozheniya, Monogr., Poligrafist, Khanty-Mansiisk, 2008

[8] Nikonorov Yu. G., Rodionov E. D., Slavskii V. V., “Geometry of Homogeneoues Riemannian Manifolds”, J. of Mathematical Scieces, 146:6 (2007), 6313–6390 | DOI | MR | Zbl

[9] Gladunova O. P., Rodionov E. D., Slavskii V. V., “Konformnye splain-funktsii”, Metricheskaya geometriya poverkhnostei i mnogogrannikov, Sb. tez. Mezhdunar. konf., posvyasch. 100-letiyu so dnya rozhdeniya N. V. Efimova, MAKS Press, M., 2010, 18–19

[10] Rodionov E. D., Slavskii V. V., “Odnomernaya sektsionnaya krivizna rimanovykh mnogoobrazii”, Dokl. akademii nauk, 387:4 (2002), 454–457 | MR | Zbl

[11] Gladunova O. P., Rodionov E. D., Slavskii V. V., “Vypuklye mnogogranniki prostranstva Lobachevskogo i interpolyatsiya funktsii”, Dokl. Akademii nauk, 441:6 (2011), 727–730 | MR | Zbl