The complexity of isomorphism problem for computable projective planes
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 1, pp. 68-75
Voir la notice de l'article provenant de la source Math-Net.Ru
Computable presentations for projective planes are studied. We prove that the isomorphism problem is $\Sigma^1_1$ complete for the following classes of projective planes: pappian projective planes, desarguesian projective planes, arbitrary projective planes.
Keywords:
projective plane, pappian projective plane, desarguesian projective plane, computable model, isomorphism problem.
@article{VNGU_2013_13_1_a6,
author = {N. T. Kogabaev},
title = {The complexity of isomorphism problem for computable projective planes},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {68--75},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a6/}
}
TY - JOUR AU - N. T. Kogabaev TI - The complexity of isomorphism problem for computable projective planes JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2013 SP - 68 EP - 75 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a6/ LA - ru ID - VNGU_2013_13_1_a6 ER -
N. T. Kogabaev. The complexity of isomorphism problem for computable projective planes. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 1, pp. 68-75. http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a6/