The complexity of isomorphism problem for computable projective planes
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 1, pp. 68-75

Voir la notice de l'article provenant de la source Math-Net.Ru

Computable presentations for projective planes are studied. We prove that the isomorphism problem is $\Sigma^1_1$ complete for the following classes of projective planes: pappian projective planes, desarguesian projective planes, arbitrary projective planes.
Keywords: projective plane, pappian projective plane, desarguesian projective plane, computable model, isomorphism problem.
@article{VNGU_2013_13_1_a6,
     author = {N. T. Kogabaev},
     title = {The complexity of isomorphism problem for computable projective planes},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {68--75},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a6/}
}
TY  - JOUR
AU  - N. T. Kogabaev
TI  - The complexity of isomorphism problem for computable projective planes
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2013
SP  - 68
EP  - 75
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a6/
LA  - ru
ID  - VNGU_2013_13_1_a6
ER  - 
%0 Journal Article
%A N. T. Kogabaev
%T The complexity of isomorphism problem for computable projective planes
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2013
%P 68-75
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a6/
%G ru
%F VNGU_2013_13_1_a6
N. T. Kogabaev. The complexity of isomorphism problem for computable projective planes. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 1, pp. 68-75. http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a6/