Transonic gas flow with nonplanar shock waves
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 1, pp. 57-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One of the models to describe transonic gas flows using non-linear Karman–Guderley equation. This equation is used to simulation of gas flows in the vicinity of the sonic surface. The main goal of present study is to analyze the invariant solutions of the Karman–Guderley equation to describe three-dimensional gas flows with shock waves on nonplanar surfaces. To construct a solution has been investigated global behavior of integral curves. The study periods of solutions showed that there are possible cases of two nested wave on helical surface.
Keywords: transonic flow, Rankine–Hugoniot conditions, shock wave.
Mots-clés : invariant solution
@article{VNGU_2013_13_1_a5,
     author = {M. Yu. Kazakova},
     title = {Transonic gas flow with nonplanar shock waves},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {57--67},
     year = {2013},
     volume = {13},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a5/}
}
TY  - JOUR
AU  - M. Yu. Kazakova
TI  - Transonic gas flow with nonplanar shock waves
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2013
SP  - 57
EP  - 67
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a5/
LA  - ru
ID  - VNGU_2013_13_1_a5
ER  - 
%0 Journal Article
%A M. Yu. Kazakova
%T Transonic gas flow with nonplanar shock waves
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2013
%P 57-67
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a5/
%G ru
%F VNGU_2013_13_1_a5
M. Yu. Kazakova. Transonic gas flow with nonplanar shock waves. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 1, pp. 57-67. http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a5/

[1] Koul Dzh., Kuk L., Transzvukovaya aerodinamika, Per. s angl., Mir, M., 1989

[2] Guderlei K. G., Teoriya okolozvukovykh techenii, Izd-vo. inostr. lit., M., 1960

[3] Shifrin E. G., Potentsialnye i vikhrevye transzvukovye techeniya idealnogo gaza, Fizmatlit, M., 2001

[4] Kuznetsova E. O., Chernov I. A., “Tochnye resheniya transzvukovykh uravnenii gazovoi dinamiki”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 7:1 (2007), 54–63

[5] Golovin S. V., “Gruppovoe rassloenie i tochnye resheniya uravneniya transzvukovogo dvizheniya gaza”, PMTF, 44:3 (2003), 51–63 | MR | Zbl

[6] Ovsyannikov L. V., Lektsii po osnovam gazovoi dinamiki, Nauka, M., 1981 | MR | Zbl

[7] Menschikov V. M., “O prodolzhenii invariantnykh reshenii uravnenii gazovoi dinamiki cherez udarnuyu volnu”, Dinamika sploshnoi sredy: Sb. nauch. tr., 4, Novosibirsk, 1970, 163–169