Logic unification behavioral equivalences of timed event structures
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 1, pp. 32-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The intention of the paper is to provide a uniform logic characteristic for timed extensions of partial order based equivalences (pomset trace equivalence, testing equivalence, history preserving bisimulation and hereditary history preserving bisimulation) in the setting of a true concurrency model – timed event structures. For this purpose, we use open maps based characterizations of the equivalences and the logics of path assertions.
Keywords: timed event structures, behaviour equivalences, category theory, logic characteristic.
Mots-clés : unification
@article{VNGU_2013_13_1_a3,
     author = {N. S. Gribovskaya},
     title = {Logic unification behavioral equivalences of timed event structures},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {32--46},
     year = {2013},
     volume = {13},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a3/}
}
TY  - JOUR
AU  - N. S. Gribovskaya
TI  - Logic unification behavioral equivalences of timed event structures
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2013
SP  - 32
EP  - 46
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a3/
LA  - ru
ID  - VNGU_2013_13_1_a3
ER  - 
%0 Journal Article
%A N. S. Gribovskaya
%T Logic unification behavioral equivalences of timed event structures
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2013
%P 32-46
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a3/
%G ru
%F VNGU_2013_13_1_a3
N. S. Gribovskaya. Logic unification behavioral equivalences of timed event structures. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 1, pp. 32-46. http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a3/

[1] Joyal A., Nielsen M., Winskel G., “Bisimulation from Open Maps”, Information and Computation, 127:2 (1996), 164–185 | DOI | MR | Zbl

[2] Cattani G. L., Sassone V., “Higher Dimentional Transition Systems”, $11^\text{th}$ Annual IEEE Symp. on Logic in Computer Science, IEEE Comp. Soc. Press, Washington, 1996, 55–62 | DOI | MR

[3] Nielsen M., Cheng A., “Observing Behaviour Categorically”, LNCS, 1026, 1995, 263–278 | MR

[4] Oshevskaya E. S., “Open Maps Bisimulations for Higher Dimensional Automata Models”, LNCS, 5699, 2009, 274–286 | Zbl

[5] Hune T., Nielsen M., “Bisimulation and Open Maps for Timed Transition Systems”, Fundamenta Informaticae, 38:1–2 (1999), 61–77 | MR | Zbl

[6] Virbitskaite I. B., Gribovskaya N. S., “Open Maps and Observational Equivalences for Timed Partial Order Models”, Fundamenta Informaticae, 60:1–4 (2004), 383–399 | MR | Zbl

[7] Gribovskaya N. S., Virbitskaite I. B., “Timed Delay Bisimulation Is an Equivalence Relation for Timed Transition Systems”, Fundamenta Informaticae, 93:1–3 (2009), 127–142 | MR | Zbl

[8] Virbitskaite I. B., Gribovskaya N. S., Best E., “A Categorical View of Timed Behaviours”, Fundamenta Informaticae, 102:1 (2010), 129–143 | MR | Zbl

[9] Winskel G., “An Introduction to Event Structures”, LNCS, 354, 1988, 364–397 | MR

[10] Boudol G., Castellani I., “Concurrency and Atomicity”, Theoretical Computer Science, 59 (1989), 25–84 | DOI | MR

[11] Joyal A., Moerdijk I., “A Completeness Theorem for Open Maps”, Annual Pure Applied Logic, 70 (1997), 51–86 | DOI | MR