Optimal control of a rigidity parameter of thin inclusions in elastic bodies with curvilinear cracks
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 1, pp. 135-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper concerns an optimal control problem for a 2D elastic body with a thin rigid inclusion and a crack. Inequality type boundary conditions are imposed at the crack faces to provide a mutual non-penetration between the crack faces. The cost functional characterizes a derivative of the energy functional with respect to the crack length. A rigidity of the inclusion is considered as a control function. The main result consists in a proof of the solution existence to the optimal control problem.
Keywords: crack, thin inclusion, nonlinear boundary conditions, optimal control, derivative of energy functional.
@article{VNGU_2013_13_1_a11,
     author = {V. V. Shcherbakov},
     title = {Optimal control of a~rigidity parameter of thin inclusions in elastic bodies with curvilinear cracks},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {135--149},
     year = {2013},
     volume = {13},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a11/}
}
TY  - JOUR
AU  - V. V. Shcherbakov
TI  - Optimal control of a rigidity parameter of thin inclusions in elastic bodies with curvilinear cracks
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2013
SP  - 135
EP  - 149
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a11/
LA  - ru
ID  - VNGU_2013_13_1_a11
ER  - 
%0 Journal Article
%A V. V. Shcherbakov
%T Optimal control of a rigidity parameter of thin inclusions in elastic bodies with curvilinear cracks
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2013
%P 135-149
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a11/
%G ru
%F VNGU_2013_13_1_a11
V. V. Shcherbakov. Optimal control of a rigidity parameter of thin inclusions in elastic bodies with curvilinear cracks. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 13 (2013) no. 1, pp. 135-149. http://geodesic.mathdoc.fr/item/VNGU_2013_13_1_a11/

[1] Loigering G., Khludnev A. M., “O ravnovesii uprugikh tel, soderzhaschikh tonkie zhestkie vklyucheniya”, Dokl. Akademii nauk, 430:1 (2010), 47–50 | MR

[2] Khludnev A. M., Negri M., “Crack on the Boundary of a Thin Elastic Inclusion inside an Elastic Body”, ZAMM, 92:5 (2012), 341–354 | DOI | MR | Zbl

[3] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000

[4] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010

[5] Cherepanov G. P., Mekhanika khrupkogo razrusheniya, Nauka, M., 1974

[6] Rudoi E. M., “Differentsirovanie funktsionalov energii v dvumernoi teorii uprugosti dlya tel, soderzhaschikh krivolineinye treschiny”, PMTF, 45:6 (2004), 83–94 | MR | Zbl

[7] Banichuk N. V., Optimizatsiya form uprugikh tel, Nauka, M., 1980 | MR

[8] Banichuk N. V., Optimizatsiya elementov konstruktsii iz kompozitsionnykh materialov, Mashinostroenie, M., 1988

[9] Khaslinger Ya., Neitaanmyaki P., Konechno-elementnaya approksimatsiya dlya optimalnogo proektirovaniya form: teoriya i prilozheniya, Mir, M., 1992

[10] Khludnev A. M., Sokolowski J., Modelling and Control in Solid Mechanics, Birkhauser, Basel–Boston–Berlin, 1997 | MR | Zbl

[11] Khludnev A. M., Leugering G., “Optimal Control of Cracks in Elastic Bodies with Thin Rigid Inclusions”, ZAMM, 91:2 (2011), 125–137 | DOI | MR | Zbl

[12] Khludnev A. M., “Optimal Control of Crack Growth in Elastic Body with Inclusions”, Europ. J. Mech. A/Solids, 29:3 (2010), 392–399 | DOI | MR

[13] Tsigler F., Mekhanika tverdykh tel i zhidkostei, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2002

[14] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR | Zbl

[15] Lure K. A., Optimalnoe upravlenie v zadachakh matematicheskoi fiziki, Nauka, M., 1975 | MR

[16] Morozov N. F., Matematicheskie voprosy teorii treschin, Nauka, M., 1984 | MR

[17] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974