Entropy Solutions of Differential Equations with Variable Parabolicity Direction
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 4, pp. 82-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

First-type boundary problem is considered in restricted area with variable parabolicity direction. Equations of this form arise in the Prandtl boundary layer modeling. It is proved that for any initial and final data exists a unique entropy solution.
Keywords: entropy solutions, variable parabolicity direction, first-type boundary problem.
@article{VNGU_2012_12_4_a11,
     author = {I. V. Kuznetsov},
     title = {Entropy {Solutions} of {Differential} {Equations} with {Variable} {Parabolicity} {Direction}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {82--100},
     year = {2012},
     volume = {12},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2012_12_4_a11/}
}
TY  - JOUR
AU  - I. V. Kuznetsov
TI  - Entropy Solutions of Differential Equations with Variable Parabolicity Direction
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2012
SP  - 82
EP  - 100
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2012_12_4_a11/
LA  - ru
ID  - VNGU_2012_12_4_a11
ER  - 
%0 Journal Article
%A I. V. Kuznetsov
%T Entropy Solutions of Differential Equations with Variable Parabolicity Direction
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2012
%P 82-100
%V 12
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2012_12_4_a11/
%G ru
%F VNGU_2012_12_4_a11
I. V. Kuznetsov. Entropy Solutions of Differential Equations with Variable Parabolicity Direction. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 4, pp. 82-100. http://geodesic.mathdoc.fr/item/VNGU_2012_12_4_a11/

[1] Carrillo J., “Entropy Solutions for Nonlinear Degenerate Problems”, Arch. Rational Mech. Anal., 147 (1999), 269–361 | DOI | MR | Zbl

[2] Bocharov O. B., “O pervoi kraevoi zadache dlya uravneniya teploprovodnosti so znakoperemennym koeffitsientom”, Dinamika sploshnoi sredy, 37, Novosibirsk, 1978, 27–39 | MR

[3] Monakhov V. N., “Vozvratnye techeniya v pogranichnom sloe”, Dinamika sploshnoi sredy, 113, Novosibirsk, 1998, 107–113 | MR | Zbl

[4] Kuznetsov I. V., “Entropiinye resheniya differentsialnogo uravneniya vtorogo poryadka s peremennym napravleniem parabolichnosti”, Sib. mat. zhurn., 46:3 (2005), 594–619 | MR | Zbl

[5] Mascia C., Porretta A., Terracina A., “Nonhomogeneous Dirichlet Problems for Degenerate Parabolic-Hyperbolic Equations”, Arch. Rational Mech. Anal., 163 (2002), 87–124 | DOI | MR | Zbl

[6] Ambrosio L., Fusco N., Pallara D., Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press, Oxford, 2000 | MR | Zbl

[7] Otto F., “Conservation Laws in Bounded Domains, Uniqueness and Existence via Parabolic Approximation”: Málek J., Ne$\check{c}$as J., Rokyta M., Ru$\breve{z}$i$\check{c}$ka M., Weak and Measure-Valued Solutions to Evolutionary PDE's, Chap. 2 § 2.6, 2.7, 2.8, Chapman, 1996, 95–143

[8] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[9] Simon J., “Compact Sets in the Space $L_p(0,T;B)$”, Annali Mat. Pura ed Appl., 146 (1987), 65–96 | DOI | MR | Zbl

[10] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Mat. sb., 81:2 (1970), 228–255 | Zbl