Boundary Value Problem for a Class of Degenerate Sobolev Type Systems
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 3, pp. 127-138 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to the solvability of boundary problem for a class of degenerate systems of composite (sobolev) type. For this problem we prove the existence theorem of regular solutions.
Keywords: the first boundary value problem, equation of Sobolev type, regular solutions, apriori estimates.
@article{VNGU_2012_12_3_a9,
     author = {N. R. Pinigina},
     title = {Boundary {Value} {Problem} for a {Class} of {Degenerate} {Sobolev} {Type} {Systems}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {127--138},
     year = {2012},
     volume = {12},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2012_12_3_a9/}
}
TY  - JOUR
AU  - N. R. Pinigina
TI  - Boundary Value Problem for a Class of Degenerate Sobolev Type Systems
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2012
SP  - 127
EP  - 138
VL  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2012_12_3_a9/
LA  - ru
ID  - VNGU_2012_12_3_a9
ER  - 
%0 Journal Article
%A N. R. Pinigina
%T Boundary Value Problem for a Class of Degenerate Sobolev Type Systems
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2012
%P 127-138
%V 12
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2012_12_3_a9/
%G ru
%F VNGU_2012_12_3_a9
N. R. Pinigina. Boundary Value Problem for a Class of Degenerate Sobolev Type Systems. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 3, pp. 127-138. http://geodesic.mathdoc.fr/item/VNGU_2012_12_3_a9/

[1] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[2] Kozhanov A. I., “O svoistvakh reshenii dlya odnogo klassa psevdoparabolicheskikh uravnenii”, Dokl. RAN, 236:5 (1992), 781–786

[3] Kozhanov A. I., “Certain Classes of Degenerate Sobolev–Galpern Equation”, Siberian Adv. Math., 4:1 (1994), 65–94 | MR | Zbl

[4] Kozhanov A. I., “O kraevykh zadachakh dlya nekotorykh klassov uravnenii vysokogo poryadka, nerazreshennykh otnositelno starshei proizvodnoi”, Sib. mat. zhurn., 35:2 (1994), 359–376 | MR | Zbl

[5] Kozhanov A. I., Composite Type Equation and Inverse Problem, VSP, Utrecht, the Netherlands, 1999 | MR | Zbl

[6] Sviridyuk G. A., Linear Sobolev Type Equation and Degenerate Semigroup of Operators, eds. G. A. Sviridyuk, V. E. Fedorov, VSP, Utrecht, 2003 | Zbl

[7] Fedorov V. E., “Vyrozhdennye silnonepreryvnye gruppy operatorov”, Izv. vuzov. Matematika, 2000, no. 3 (454), 54–65 | MR | Zbl

[8] Yakubov S. Ya., Lineinye differentsialno-operatornye uravneniya i ikh prilozheniya, Elm, Baku, 1985

[9] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, 2-e izd., pererab., Nauka, M., 1973 | MR

[10] Smirnov M. M., Vyrozhdayuschiesya ellipticheskie i giperbolicheskie uravneniya, Nauka, M., 1966 | MR