An Application of the SVD-Method to the Problem of Integral Geometry of 2-Tensor Fields
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 3, pp. 73-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A problem of integral geometry consisting in determination of a given in unit disk symmetric 2-tensor field by its known ray transforms is considered. Singular value decompositions (SVD) of the operators of longitudinal, transverse and mixed ray transforms that are the integrals of projections of a field at a line of integration are constructed. The results are based essentially on a theorem of a tensor field decomposition and its representation through potentials. The obtained singular value decompositions are constructive and are foundations for the algorithms of a tensor field reconstruction by its known ray transforms.
Keywords: tensor field, integral geometry, tensor tomography, ray transform.
@article{VNGU_2012_12_3_a6,
     author = {E. Yu. Derevtsov and A. P. Polyakova},
     title = {An {Application} of the {SVD-Method} to the {Problem} of {Integral} {Geometry} of {2-Tensor} {Fields}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {73--94},
     year = {2012},
     volume = {12},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2012_12_3_a6/}
}
TY  - JOUR
AU  - E. Yu. Derevtsov
AU  - A. P. Polyakova
TI  - An Application of the SVD-Method to the Problem of Integral Geometry of 2-Tensor Fields
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2012
SP  - 73
EP  - 94
VL  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2012_12_3_a6/
LA  - ru
ID  - VNGU_2012_12_3_a6
ER  - 
%0 Journal Article
%A E. Yu. Derevtsov
%A A. P. Polyakova
%T An Application of the SVD-Method to the Problem of Integral Geometry of 2-Tensor Fields
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2012
%P 73-94
%V 12
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2012_12_3_a6/
%G ru
%F VNGU_2012_12_3_a6
E. Yu. Derevtsov; A. P. Polyakova. An Application of the SVD-Method to the Problem of Integral Geometry of 2-Tensor Fields. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 3, pp. 73-94. http://geodesic.mathdoc.fr/item/VNGU_2012_12_3_a6/

[1] Davison M. E., “A Singular Value Decomposition for the Radon Transform in $n$-Dimensional Euclidean space”, Numer. Funct. Anal. and Optimiz., 3 (1981), 321–340 | DOI | MR | Zbl

[2] Louis A. K., “Orthogonal Function Series Expansions and the Null Space of the Radon Transform”, SIAM J. Math. Anal., 15 (1984), 621–633 | DOI | MR | Zbl

[3] Quinto E. T., “Singular Value Decomposition and Inversion Methods for the Exterior Radon Transform and a Spherical Transform”, J. Math. Anal. Appl., 95 (1985), 437–448 | DOI | MR

[4] Maass P., “The X-Ray Transform: Singular Value Decomposition and Resolution”, Inverse Problems, 3 (1987), 727–741 | DOI | MR

[5] Louis A. K., “Incomplete Data Problems in X-Ray Computerized Tomography. I: Singular Value Decomposition of the Limited Angle Transform”, Numer. Math., 48 (1986), 251–262 | DOI | MR | Zbl

[6] Derevtsov E. Yu., Kazantsev S. G., Schuster T., “Polynomial Bases for Subspaces of Vector Fields in the Unit Ball. Method of Ridge Functions”, J. Inverse Ill-Posed Problems, 15:1 (2007), 1–38 | DOI | MR

[7] Derevtsov E. Yu., Efimov A. V., Louis A. K., Schuster T., “Singular Value Decomposition and its Application to Numerical Inversion for Ray Transforms in 2D Vector Tomography”, J. Inverse Ill-Posed Problems, 19:4–5 (2011), 689–715 | MR

[8] Kazantsev S. G., Bukhgeim A. A., “Singular Value Decomposition for the 2D Fan-Beam Radon Transform of Tensor Fields”, J. Inv. Ill-Posed Problems, 12:4 (2004), 1–35 | MR

[9] Kochin N. E., Vektornoe ischislenie i nachala tenzornogo ischisleniya, ONTI, Gos. tekhniko-teoreticheskoe izd-vo, L.–M., 1934

[10] Weyl H., “The Method of Orthogonal Projection in Potential Theory”, Duke Math. J., 1940, no. 7, 411–444 | DOI | MR

[11] Derevtsov E. Yu., “An Approach to Direct Reconstruction of a Solenoidal Part in Vector and Tensor Tomography Problems”, J. Inverse Ill-Posed Problems, 13:3–6 (2005), 213–246 | DOI | MR | Zbl

[12] Derevtsov E. Yu., “Nekotorye zadachi neskalyarnoi tomografii”, Sib. elektronnye matem. izvestiya, 7 (2010), 81–111

[13] Sharafutdinov V. A., Integralnaya geometriya tenzornykh polei, Nauka, Novosibirsk, 1993 | MR | Zbl

[14] Deans S., The Radon Transform and Some of its Applications, Wiley, N.Y., 1983 | MR | Zbl

[15] Natterer F., Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990 | MR | Zbl

[16] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[17] Louis A. K., Inverse und Schlecht Gestellte Probleme, Teubner, Stuttgart, 1989 | MR | Zbl

[18] Schuster T., The Method of Approximate Inverse: Theory and Applications, Springer, Heidelberg, 2007 | MR

[19] Louis A. K., “Feature Reconstruction in Inverse Problems”, Inverse Problems, 27 (2011), 065010 | DOI | MR | Zbl

[20] Sege G., Ortogonalnye mnogochleny, Gos. izd-vo fiz.-mat. lit., M., 1962