Hyperarithmetical Categoricity of the Boolean Algebra $\mathfrak{B}(\omega^{\alpha}\times\eta)$
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 3, pp. 35-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider $\Delta^{0}_{\beta}$-categoricity in Boolean algebras. We prove the following theorem: if $\delta$ is a limit ordinal or 0, $n\in\omega$, and $\delta+n\geqslant 1$, then the Boolean algebra $\mathfrak{B}(\omega^{\delta+n}\times\eta)$ is $\Delta^{0}_{\delta+2n+1}$-categorical and not $\Delta^{0}_{\delta+2n}$-categorical.
Keywords: Boolean algebra, categoricity, back-and-forth relations.
@article{VNGU_2012_12_3_a3,
     author = {N. A. Bazhenov},
     title = {Hyperarithmetical {Categoricity} of the {Boolean} {Algebra} $\mathfrak{B}(\omega^{\alpha}\times\eta)$},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {35--45},
     year = {2012},
     volume = {12},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2012_12_3_a3/}
}
TY  - JOUR
AU  - N. A. Bazhenov
TI  - Hyperarithmetical Categoricity of the Boolean Algebra $\mathfrak{B}(\omega^{\alpha}\times\eta)$
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2012
SP  - 35
EP  - 45
VL  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2012_12_3_a3/
LA  - ru
ID  - VNGU_2012_12_3_a3
ER  - 
%0 Journal Article
%A N. A. Bazhenov
%T Hyperarithmetical Categoricity of the Boolean Algebra $\mathfrak{B}(\omega^{\alpha}\times\eta)$
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2012
%P 35-45
%V 12
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2012_12_3_a3/
%G ru
%F VNGU_2012_12_3_a3
N. A. Bazhenov. Hyperarithmetical Categoricity of the Boolean Algebra $\mathfrak{B}(\omega^{\alpha}\times\eta)$. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 3, pp. 35-45. http://geodesic.mathdoc.fr/item/VNGU_2012_12_3_a3/

[1] Goncharov S. S., Schetnye bulevy algebry i razreshimost, Nauchnaya kniga, Novosibirsk, 1996 | MR

[2] Goncharov S. S., Ershov Yu. L., Konstruktivnye modeli, Nauchnaya kniga, Novosibirsk, 1999

[3] Ash C. J., Khight J. F., Computable Structures and the Hyperarithmetical Hierarchy, Elsevier Science, 2000

[4] Ash C. J., Knight J. F., Manasse M., Slaman T., “Generic Copies of Countable Structures”, Ann. Pure Appl. Logic, 42:3 (1989), 195–205 | DOI | MR | Zbl

[5] Chisholm J., “Effective Model Theory vs. Recursive Model Theory”, J. Symb. Logic, 55:3 (1990), 1168–1191 | DOI | MR | Zbl

[6] Goncharov S. S., “O chisle neavtoekvivalentnykh konstruktivizatsii”, Algebra i logika, 16:3 (1977), 257–282 | MR | Zbl

[7] Goncharov S., Harizanov V., Knight J., McCoy C., Miller R., Solomon R., “Enumerations in Computable Structure Theory”, Ann. Pure Appl. Logic, 136:3 (2005), 219–246 | DOI | MR | Zbl

[8] Chisholm J., Fokina E. B., Goncharov S. S., Harizanov V. S., Knight J. F., Quinn S., “Intrinsic Bounds on Complexity and Definability at Limit Levels”, J. Symb. Logic, 74:3 (2009), 1047–1060 | DOI | MR | Zbl

[9] Goncharov S. S., “Avtoustoichivost i vychislimye semeistva konstruktivizatsii”, Algebra i logika, 14:6 (1975), 647–680 | MR | Zbl

[10] Goncharov S. S., Dzgoev V. D., “Avtoustoichivost modelei”, Algebra i logika, 19:1 (1980), 45–58 | MR | Zbl

[11] Remmel J. B., “Recursive Isomorphism Types of Recursive Boolean Algebras”, J. Symb. Logic, 46:3 (1981), 572–594 | DOI | MR | Zbl

[12] McCoy C., “$\Delta^0_2$-Categoricity in Boolean Algebras and Linear Orderings”, Ann. Pure Appl. Logic, 119:1–3 (2003), 85–120 | DOI | MR | Zbl

[13] Mak-Koi Ch. F. D., “O $\Delta^0_3$-kategorichnosti dlya lineinykh poryadkov i bulevykh algebr”, Algebra i logika, 41:5 (2002), 531–552 | MR

[14] Ash C. J., “Categoricity in Hyperarithmetical Degrees”, Ann. Pure Appl. Logic, 34:1 (1987), 1–14 | DOI | MR | Zbl