Elementary Theories of Continuous Functions Spaces
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 3, pp. 22-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Method of generalized interpretations with its applicability for the proving of theories decidability was studied. By this method the decidability of the continuous functions theory from $\mathbb{R}$ to $\mathbb{R}$ lattice and from $\mathbb{R}^n$ to $\mathbb{R}$ lattice has been proven. The undecidability of theory of continuous functions structure with additional unary predicate which distinguishes constants has been proven as well. This study demonstrated that the new method may be considered as a powerful tool for establishing the decidability of elementary theories.
Keywords: elementary theory, decidability of theories, reducibility to theory, generalized method of interpretations, lattice of continuous functions.
@article{VNGU_2012_12_3_a2,
     author = {V. S. Amstislavskiy},
     title = {Elementary {Theories} of {Continuous} {Functions} {Spaces}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {22--34},
     year = {2012},
     volume = {12},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2012_12_3_a2/}
}
TY  - JOUR
AU  - V. S. Amstislavskiy
TI  - Elementary Theories of Continuous Functions Spaces
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2012
SP  - 22
EP  - 34
VL  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2012_12_3_a2/
LA  - ru
ID  - VNGU_2012_12_3_a2
ER  - 
%0 Journal Article
%A V. S. Amstislavskiy
%T Elementary Theories of Continuous Functions Spaces
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2012
%P 22-34
%V 12
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2012_12_3_a2/
%G ru
%F VNGU_2012_12_3_a2
V. S. Amstislavskiy. Elementary Theories of Continuous Functions Spaces. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 3, pp. 22-34. http://geodesic.mathdoc.fr/item/VNGU_2012_12_3_a2/

[1] Keisler G. Dzh., Chen Ch. Ch., Teoriya modelei, Mir, M., 1977 | MR

[2] Hodges W., Model Theory, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[3] Grzegorczyk A., “Undecidability of Some Topological Theories”, Fundamenta Mathematicae, 38, Warszawa, 1951, 137–152 | MR

[4] Rabin M. O., “Razreshimye teorii”, Spravochnaya kniga po matematicheskoi logike, v. 3, ed. Dzh. Barvais, Nauka, M., 1982, 77–133

[5] Rabin M. O., “Decidability of Second Order Theories and Automata on Infinite Trees”, Trans. Amer. Math. Soc., 141 (1969), 1–35 | MR | Zbl

[6] Ershov Yu. L., Problemy razreshimosti i konstruktivnye modeli, Nauka, Gl. red. fiz.-mat. lit., M., 1980 | MR

[7] Rabin M. O., “A Simple Method for Undecidability Proofs and Some Applications. Model Theory”, Logic, Methodology and Philosophy of Science, v. II, ed. Y. Bar-Hillel, North-Holland, Amsterdam, 1965, 58–68 | MR