Shape sensitivity analysis of the energy integrals for the bodies with rigid inclusions and cracks under nonpenetration condition
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 2, pp. 108-122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the boundary value problem for equations of the 2D-elasticity theory defined in a domain with a cut. The nonpenetration conditions are fulfilled on the boundary. Moreover we assume that the solution of the problem belongs to the space of rigid displacement on a part of the domain. The shape derivative of the energy functional is obtained.
Keywords: crack, rigid inclusion, shape derivative, nonsmooth domain, nonpenetration condition.
@article{VNGU_2012_12_2_a9,
     author = {E. M. Rudoy},
     title = {Shape sensitivity analysis of the energy integrals for the bodies with rigid inclusions and cracks under nonpenetration condition},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {108--122},
     year = {2012},
     volume = {12},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2012_12_2_a9/}
}
TY  - JOUR
AU  - E. M. Rudoy
TI  - Shape sensitivity analysis of the energy integrals for the bodies with rigid inclusions and cracks under nonpenetration condition
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2012
SP  - 108
EP  - 122
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2012_12_2_a9/
LA  - ru
ID  - VNGU_2012_12_2_a9
ER  - 
%0 Journal Article
%A E. M. Rudoy
%T Shape sensitivity analysis of the energy integrals for the bodies with rigid inclusions and cracks under nonpenetration condition
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2012
%P 108-122
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2012_12_2_a9/
%G ru
%F VNGU_2012_12_2_a9
E. M. Rudoy. Shape sensitivity analysis of the energy integrals for the bodies with rigid inclusions and cracks under nonpenetration condition. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 2, pp. 108-122. http://geodesic.mathdoc.fr/item/VNGU_2012_12_2_a9/

[1] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT-Press, Southampton–Boston, 2000

[2] Sokolowski J., Zolesio J.-P., Introduction to Shape Optimization. Shape Sensitivity Analysis, Springer-Verlag, 1992 | MR | Zbl

[3] Kovtunenko V. A., “Primal-Dual Methods of Shape Sensitivity Analysis for Curvilinear Cracks with Nonpenetration”, IMA J. Appl. Math., 71 (2006), 635–657 | DOI | MR | Zbl

[4] Argatov I. I., Nazarov S. A., “Vysvobozhdenie energii pri izlome treschiny v ploskom anizotropnom tele”, PMM, 66 (2002), 502–514 | MR | Zbl

[5] Rudoi E. M., “Asimptotika funktsionala energii dlya smeshannoi kraevoi zadachi chetvertogo poryadka v oblasti s razrezom”, Sib. mat. zhurn., 50:2 (2009), 430–445 | MR

[6] Khludnev A. M., Kovtunenko V. A., Tani A., “Evolution of a Crack with Kink and Non-Penetration”, J. Math. Soc. Japan, 60:4 (2008), 1219–1253 | DOI | MR | Zbl

[7] Khludnev A. M., Sokolowski J., Szulc K., “Shape and Topological Sensitivity Analysis in Domains with Cracks”, Applications of Mathematics, 55:6 (2010), 433–469 | DOI | MR | Zbl

[8] Khludnev A. M., “Zadacha o treschine na granitse zhestkogo vklyucheniya v uprugoi plastine”, Izv. RAN. MTT, 2010, no. 5, 98–110

[9] Rudoi E. M., “Asimptotika funktsionala energii dlya trekhmernogo tela s zhestkim vklyucheniem i treschinoi”, PMTF, 52:2 (2011), 114–127 | MR

[10] Rudoi E. M., “Formula Griffitsa i integral Cherepanova–Raisa dlya plastiny s zhestkim vklyucheniem i treschinoi”, Vestn. Novosib. gos. un-ta. Seriya: Matematika, mekhanika, informatika, 10:2 (2010), 98–117

[11] Stekina T. A., “Variatsionnaya zadacha ob odnostoronnem kontakte uprugoi plastiny s balkoi”, Vestn. Novosib. gos. un-ta. Seriya: Matematika, mekhanika, informatika, 9:1 (2009), 45–56 | Zbl

[12] Maz'ya V. G., Poborchi S. V., Differentiable Functions on Bad Domains, World Scientific Pub. Co. Inc., 1997 | MR

[13] Rudoi E. M., “Differentsirovanie funktsionalov energii v zadache o krivolineinoi treschine s vozmozhnym kontaktom beregov”, Izv. RAN. MTT, 2007, no. 6, 113–127

[14] Kovtunenko V. A., “Invariantnye integraly energii dlya nelineinoi zadachi o treschine s vozmozhnym kontaktom beregov”, PMM, 67:1 (2003), 109–123 | MR | Zbl

[15] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[16] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR

[17] Evans L. K., Gariepi R. F., Teoriya mery i tonkie svoistva funktsii, Universitetskaya seriya, 9, Nauchnaya kniga (IDMI), Novosibirsk, 2002