@article{VNGU_2012_12_2_a8,
author = {I. V. Podvigin},
title = {Diagonal martingale ergodic sequences},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {103--107},
year = {2012},
volume = {12},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2012_12_2_a8/}
}
I. V. Podvigin. Diagonal martingale ergodic sequences. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 2, pp. 103-107. http://geodesic.mathdoc.fr/item/VNGU_2012_12_2_a8/
[1] Kachurovskii A. G., “Martingalno-ergodicheskaya teorema”, Mat. zametki, 64:2 (1998), 311–314 | DOI | MR | Zbl
[2] Kachurovskii A. G., “Edinye teorii, unifitsiruyuschie ergodicheskie srednie i martingaly”, Tr. Matematicheskogo instituta im. V. A. Steklova, 256, 2007, 172–200 | MR | Zbl
[3] Guangzhou L., Xuan M., Peide L., “Convergence Theorems and Maximal Inequalities for Martingale Ergodic Processes”, Acta Mathematica Scientia, 30:4 (2010), 1269–1279 | DOI | MR | Zbl
[4] Mesiar R., “A Generalization of the Individual Ergodic Theorem”, Mathematica Slovaca, 30:3 (1980), 327–330 | MR | Zbl
[5] Mesiar R., “Martingale Theorems in the Ergodic Theory”, Proceedings of the $10^\text{th}$ Winter School on Abstract Analysis, Rendiconti del Circolo Matematico di Palermo. Serie II, 2, Circolo Matematico di Palermo, Palermo, 1982, 187–191 | MR | Zbl
[6] Podvigin I. V., “Martingalno-ergodicheskie i ergodiko-martingalnye protsessy s nepreryvnym vremenem”, Mat. sbornik, 200:5 (2009), 55–70 | DOI | MR | Zbl
[7] Podvigin I. V., “Martingalno-ergodicheskaya teorema”, Sib. mat. zhurn., 51:6 (2010), 1422–1429 | MR | Zbl
[8] Petz D., “Quantum Ergodic Theorems”, Quantum Probability and Applications to the Quantum Theory of Irreversible Processes, Lecture Notes in Mathematics, 1055, 1984, 289–300 | DOI | MR | Zbl
[9] Khalmosh P., Lektsii po ergodicheskoi teorii, Inostr. lit., M., 1959
[10] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR
[11] Dunford N., Schwartz J. T., “Convergence Almost Everywhere of Operator Averages”, J. of Rational Mechanics and Analysis, 5:1 (1956), 129–178 | MR | Zbl
[12] Krengel U., Ergodic Theorems, Walter de Gruyter, Berlin–N.Y., 1985 | MR | Zbl