Diagonal martingale ergodic sequences
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 2, pp. 103-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A proof of convergence almost everywhere for diagonal martingale ergodic sequences which include ergodic averages and Cesaro averages for reversed martingale as special cases is obtained in the article. A condition of mutual commuting for conditional expectations and ergodic averaging is sufficient for this convergence. Maximal and dominant inequalities also are proved for such sequences.
Keywords: martingale ergodic sequence, reversed martingale, ergodic averages, Dunford–Schwartz operator.
@article{VNGU_2012_12_2_a8,
     author = {I. V. Podvigin},
     title = {Diagonal martingale ergodic sequences},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {103--107},
     year = {2012},
     volume = {12},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2012_12_2_a8/}
}
TY  - JOUR
AU  - I. V. Podvigin
TI  - Diagonal martingale ergodic sequences
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2012
SP  - 103
EP  - 107
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2012_12_2_a8/
LA  - ru
ID  - VNGU_2012_12_2_a8
ER  - 
%0 Journal Article
%A I. V. Podvigin
%T Diagonal martingale ergodic sequences
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2012
%P 103-107
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2012_12_2_a8/
%G ru
%F VNGU_2012_12_2_a8
I. V. Podvigin. Diagonal martingale ergodic sequences. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 2, pp. 103-107. http://geodesic.mathdoc.fr/item/VNGU_2012_12_2_a8/

[1] Kachurovskii A. G., “Martingalno-ergodicheskaya teorema”, Mat. zametki, 64:2 (1998), 311–314 | DOI | MR | Zbl

[2] Kachurovskii A. G., “Edinye teorii, unifitsiruyuschie ergodicheskie srednie i martingaly”, Tr. Matematicheskogo instituta im. V. A. Steklova, 256, 2007, 172–200 | MR | Zbl

[3] Guangzhou L., Xuan M., Peide L., “Convergence Theorems and Maximal Inequalities for Martingale Ergodic Processes”, Acta Mathematica Scientia, 30:4 (2010), 1269–1279 | DOI | MR | Zbl

[4] Mesiar R., “A Generalization of the Individual Ergodic Theorem”, Mathematica Slovaca, 30:3 (1980), 327–330 | MR | Zbl

[5] Mesiar R., “Martingale Theorems in the Ergodic Theory”, Proceedings of the $10^\text{th}$ Winter School on Abstract Analysis, Rendiconti del Circolo Matematico di Palermo. Serie II, 2, Circolo Matematico di Palermo, Palermo, 1982, 187–191 | MR | Zbl

[6] Podvigin I. V., “Martingalno-ergodicheskie i ergodiko-martingalnye protsessy s nepreryvnym vremenem”, Mat. sbornik, 200:5 (2009), 55–70 | DOI | MR | Zbl

[7] Podvigin I. V., “Martingalno-ergodicheskaya teorema”, Sib. mat. zhurn., 51:6 (2010), 1422–1429 | MR | Zbl

[8] Petz D., “Quantum Ergodic Theorems”, Quantum Probability and Applications to the Quantum Theory of Irreversible Processes, Lecture Notes in Mathematics, 1055, 1984, 289–300 | DOI | MR | Zbl

[9] Khalmosh P., Lektsii po ergodicheskoi teorii, Inostr. lit., M., 1959

[10] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR

[11] Dunford N., Schwartz J. T., “Convergence Almost Everywhere of Operator Averages”, J. of Rational Mechanics and Analysis, 5:1 (1956), 129–178 | MR | Zbl

[12] Krengel U., Ergodic Theorems, Walter de Gruyter, Berlin–N.Y., 1985 | MR | Zbl