Groups, saturated with direct products of the finite simple nonabelian groups
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 2, pp. 123-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In work it is proved, that the periodic group saturated by one group, which is the direct product of finite simple nonabelian groups, is finite, with condition that the centralizer of a Sylow $2$-subgroup of each factor of the direct product doesn’t contain elements of odd order.
Keywords: the periodic group, the direct product of groups
Mots-clés : saturation.
@article{VNGU_2012_12_2_a10,
     author = {I. V. Sabodakh and A. A. Shlepkin},
     title = {Groups, saturated with direct products of the finite simple nonabelian groups},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {123--126},
     year = {2012},
     volume = {12},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2012_12_2_a10/}
}
TY  - JOUR
AU  - I. V. Sabodakh
AU  - A. A. Shlepkin
TI  - Groups, saturated with direct products of the finite simple nonabelian groups
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2012
SP  - 123
EP  - 126
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2012_12_2_a10/
LA  - ru
ID  - VNGU_2012_12_2_a10
ER  - 
%0 Journal Article
%A I. V. Sabodakh
%A A. A. Shlepkin
%T Groups, saturated with direct products of the finite simple nonabelian groups
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2012
%P 123-126
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2012_12_2_a10/
%G ru
%F VNGU_2012_12_2_a10
I. V. Sabodakh; A. A. Shlepkin. Groups, saturated with direct products of the finite simple nonabelian groups. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 2, pp. 123-126. http://geodesic.mathdoc.fr/item/VNGU_2012_12_2_a10/

[1] Shlepkin A. K., “Sopryazhenno biprimitivno konechnye gruppy, soderzhaschie konechnye nerazreshimye podgruppy”, III Mezhdunar. konf. po algebre, Sb. tez., Krasnoyarsk, 1993, 363

[2] Shlepkin A. K., “O nekotorykh periodicheskikh gruppakh, nasyschennykh konechnymi prostymi podgruppami”, Matem. tr., 1:1 (1998), 129–138 | MR | Zbl

[3] Lysënok I. G., “Beskonechnye bernsaidovy gruppy chetnogo perioda”, Izv. RAN. Ser. matem., 60:3 (1996), 3–224 | DOI | MR | Zbl

[4] Ivanov S. V., “The Free Burnside Groups of Sufficiently Large Exponents”, Int. J. of Algebra and Computation, 4 (1994), 1–308 | DOI | MR | Zbl

[5] Amberg B., Kazarin L., “Periodic Groups Saturated by Dihedral Subgroups”, International Algebraic Conference Dedicated to $70^\text{th}$ Birthday of Anatoly Yakovlev (19–24 June 2010), St.-Petersburg, 2010, 79–80

[6] Shlepkin A. K., Rubashkin A. G., “Ob odnom klasse periodicheskikh grupp”, Algebra i logika, 44:1 (2005), 114–125 | MR | Zbl

[7] Panyushkin D. N., Tukhvatullina L. R., Filippov K. A., “O periodicheskoi gruppe Shunkova nasyschennoi tsentralnymi rasshireniyami konechnykh 2-grupp posredstvom gruppy $L_2(5)$”, Vestn. Novosib. gos. un-ta. Seriya: Matematika, mekhanika, informatika, 10:1 (2010), 89–94

[8] Panyushkin D. N., Tukhvatullina L. R., Filippov K. A., “O gruppe Shunkova, nasyschennoi tsentralnymi rasshireniyami tsiklicheskikh grupp posredstvom proektivnykh spetsialnykh lineinykh grupp”, Tr. IMM UrO RAN, 16, no. 2, 2010, 177–185

[9] Kondratev A. S., Mazurov V. D., “2-signalizatory konechnykh prostykh grupp”, Algebra i logika, 42:5 (2003), 594–623 | MR | Zbl

[10] Shunkov V. P., “O periodicheskikh gruppakh s pochti regulyarnoi involyutsiei”, Algebra i logika, 11:4 (1972), 470–493 | Zbl