Geometric characteristics of cycles in some symmetric dynamical systems
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 2, pp. 3-12
Voir la notice de l'article provenant de la source Math-Net.Ru
We show non-uniqueness of cycles in phase portraits of some odd-dimensional nonlinear dynamical systems considered as models of gene networks regulated by negative feedbacks. We find geometric and analytic characteristics of these cycles and construct a graph, which describes qualitative behavior of trajectories of these dynamical systems.
Keywords:
gene networks models, nonlinear dynamical systems, stationary points, periodic trajectories, unstable cycles, graphs, numerical modeling.
Mots-clés : invariant domains
Mots-clés : invariant domains
@article{VNGU_2012_12_2_a0,
author = {A. A. Akinshin and V. P. Golubyatnikov},
title = {Geometric characteristics of cycles in some symmetric dynamical systems},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {3--12},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2012_12_2_a0/}
}
TY - JOUR AU - A. A. Akinshin AU - V. P. Golubyatnikov TI - Geometric characteristics of cycles in some symmetric dynamical systems JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2012 SP - 3 EP - 12 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2012_12_2_a0/ LA - ru ID - VNGU_2012_12_2_a0 ER -
%0 Journal Article %A A. A. Akinshin %A V. P. Golubyatnikov %T Geometric characteristics of cycles in some symmetric dynamical systems %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2012 %P 3-12 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VNGU_2012_12_2_a0/ %G ru %F VNGU_2012_12_2_a0
A. A. Akinshin; V. P. Golubyatnikov. Geometric characteristics of cycles in some symmetric dynamical systems. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 2, pp. 3-12. http://geodesic.mathdoc.fr/item/VNGU_2012_12_2_a0/