Boundary value problems for third-order equations with discontinuous coefficient
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 1, pp. 126-138 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work we consider boundary value problems for third order equations with changing evolution direction $\operatorname{sign}yu_{yyyy}\pm Au+c(x,y)u= f(x,y)$ in the cylinder $Q=\Omega\times(-T,T)=\{(x,y)\colon x\in\Omega,\ -T$, where $\Omega$ is connected subser of $\mathbb R^n$ that have smooth boundary and $T>0$. Here $A$ is elliptic operator $Au=\frac\partial{\partial x_j}\big(a^{ij}(x)u_{x_i}\big)$. It is assigned boundary conditions on lateral surface $\partial\Omega\times(-T,T)$ of cylinder $Q$ and on bases $\Omega\times\{-T\}$ and $\Omega\times\{T\}$ of cylinder for these equations. Also we assign coupling conditions on section $\Omega\times0$. We prove theorems of existence and uniquness of regular solutions of these problems.
Keywords: partial differential equations, third-order equations, equations with variable direction of evolution, equations with discontinuous coefficients.
Mots-clés : equations of composite type
@article{VNGU_2012_12_1_a8,
     author = {V. V. Shubin},
     title = {Boundary value problems for third-order equations with discontinuous coefficient},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {126--138},
     year = {2012},
     volume = {12},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2012_12_1_a8/}
}
TY  - JOUR
AU  - V. V. Shubin
TI  - Boundary value problems for third-order equations with discontinuous coefficient
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2012
SP  - 126
EP  - 138
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2012_12_1_a8/
LA  - ru
ID  - VNGU_2012_12_1_a8
ER  - 
%0 Journal Article
%A V. V. Shubin
%T Boundary value problems for third-order equations with discontinuous coefficient
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2012
%P 126-138
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2012_12_1_a8/
%G ru
%F VNGU_2012_12_1_a8
V. V. Shubin. Boundary value problems for third-order equations with discontinuous coefficient. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 1, pp. 126-138. http://geodesic.mathdoc.fr/item/VNGU_2012_12_1_a8/

[1] Dubinskii Yu. A., “Kvazilineinye elliptiko-parabolicheskie uravneniya”, Mat. sb., 77(119):3 (1968), 354–389 | MR | Zbl

[2] Dubinskii Yu. A., “Kraevye zadachi dlya nekotorykh klassov differentsialno-operatornykh uravnenii vysokogo poryadka”, DAN SSSR, 196:1 (1971), 32–35 | MR

[3] Dzhuraev T. D., Apakov Yu. P., “Ob avtomodelnom reshenii odnogo uravneniya tretego poryadka s kratnymi kharakteristikami”, Vestn. Samar. gos. tekhn. un-ta. Ser.: Fiz.-mat. nauki, 2007, no. 2(15), 18–26

[4] Egorov I. E., Fedorov V. E., Neklassicheskie uravneniya matematicheskoi fiziki vysokogo poryadka, Novosibirsk, 1995 | MR

[5] Tersenov S. A., Parabolicheskie uravneniya s menyayuschimsya napravleniem vremeni, Novosibirsk, 1985, 107 pp. | MR | Zbl

[6] Trenogin V. A., Funktsionalnyi analiz, Fizmatlit, M., 2002