Recovery of discontinuities for Sturm–Liouville operator
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 1, pp. 114-125 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the inverse spectral problem for Sturm–Liouville operator with piecewise continuous coefficients. We prove that asymptotic of the Jost function determines all discontinuities of the coefficients for Sturm–Liouville operator uniquely. We give an algorithm for finding discontinuities.
Keywords: inverse spectral problem, acoustic impedance
Mots-clés : Jost solution.
@article{VNGU_2012_12_1_a7,
     author = {A. A. Sedipkov},
     title = {Recovery of discontinuities for {Sturm{\textendash}Liouville} operator},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {114--125},
     year = {2012},
     volume = {12},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2012_12_1_a7/}
}
TY  - JOUR
AU  - A. A. Sedipkov
TI  - Recovery of discontinuities for Sturm–Liouville operator
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2012
SP  - 114
EP  - 125
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2012_12_1_a7/
LA  - ru
ID  - VNGU_2012_12_1_a7
ER  - 
%0 Journal Article
%A A. A. Sedipkov
%T Recovery of discontinuities for Sturm–Liouville operator
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2012
%P 114-125
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2012_12_1_a7/
%G ru
%F VNGU_2012_12_1_a7
A. A. Sedipkov. Recovery of discontinuities for Sturm–Liouville operator. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 1, pp. 114-125. http://geodesic.mathdoc.fr/item/VNGU_2012_12_1_a7/

[1] Alekseev A. S., Belonosov V. S., “The Scattering of Plane Waves in Inhomogeneous Half-Space”, Appl. Math. Lett., 8:2 (1995), 13–19 | DOI | MR | Zbl

[2] Alekseev A. S., Belonosov V. S., “Direct and Inverse Problems Associated with Inclined Passing Of SH-Waves through 1D Inhomogeneous Medium”, Bull. NCC. Ser. Num. Anal., 1994, no. 5, 1–25 | Zbl

[3] Alekseev A. S., Belonosov V. S., “Spektralnye metody v odnomernykh zadachakh teorii rasprostraneniya voln”, Mat. model. v geofizike, Tr. IVMiMG, 6, Novosibirsk, 1998, 7–39

[4] Alekseev A. S., Belonosov V. S., “Direct and Inverse Problems of Wave Propagation through a One-Dimensional Inhomogenious Medium”, Euro. J. of Appl. Math., 10 (1999), 79–96 | DOI | MR | Zbl

[5] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR | Zbl

[6] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[7] Shepelsky D. G., “The Inverse Problem of Reconstruction of the Medium'S Conductivity in a Class of Discontinuous and Increasing Funtions”, Adv. in Soviet Math., 19, 1994, 209–231 | MR

[8] Freiling G., Yurko V., “Inverse Spectral Problems for Singular Non-Selfadjoint Differential Operators with Discontinuities in an Interior Point”, Inverse Problems, 18 (2002), 757–773 | DOI | MR | Zbl

[9] Shestakov A. I., “Obratnaya spektralnaya zadacha dlya operatorov Shturma–Liuvillya s razryvnymi koeffitsientami”, Sib. mat. zhurn., 44:5 (2003), 1142–1162 | MR | Zbl

[10] Levitan B. M., Pochti periodicheskie funktsii, Gos. izd-vo teor. tekhn. lit., M., 1953 | Zbl