Multiplicative functions and Prym differentials on variable torus
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 1, pp. 74-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article started construction general theory of multiplicative functions and Prym differentials on variable torus. The Abel's theorem are proved. Dimensions spaces of holomorphic multiplicative functions and Prym differentials on torus are found. New properties for spaces of meromorphic Prym differentials on variable torus are obtained. For two important factor spaces such differentials constructed basics. Moreover, dimension the first holomorphic de Rham cohomology group of Prym differentials for characters on torus are obtained.
Keywords: multiplicative functions and Prym differentials on compact Riemann surface, Teichmueller space, abelian differentials on torus, character group.
@article{VNGU_2012_12_1_a4,
     author = {T. S. Krepitsina and V. V. Chueshev},
     title = {Multiplicative functions and {Prym} differentials on variable torus},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {74--90},
     year = {2012},
     volume = {12},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2012_12_1_a4/}
}
TY  - JOUR
AU  - T. S. Krepitsina
AU  - V. V. Chueshev
TI  - Multiplicative functions and Prym differentials on variable torus
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2012
SP  - 74
EP  - 90
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2012_12_1_a4/
LA  - ru
ID  - VNGU_2012_12_1_a4
ER  - 
%0 Journal Article
%A T. S. Krepitsina
%A V. V. Chueshev
%T Multiplicative functions and Prym differentials on variable torus
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2012
%P 74-90
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2012_12_1_a4/
%G ru
%F VNGU_2012_12_1_a4
T. S. Krepitsina; V. V. Chueshev. Multiplicative functions and Prym differentials on variable torus. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 1, pp. 74-90. http://geodesic.mathdoc.fr/item/VNGU_2012_12_1_a4/

[1] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl

[2] Appell P., Lacour E., Principes de la Theorie des Fonctions Elliptiques et Applications, Gauthier-Villars, P., 1897 | Zbl

[3] Forsyth A. R., Theory of Functions of a Complex Variable, Cambridge Univ. Press, Cambridge, 1900

[4] Springer Dzh., Vvedenie v teoriyu rimanovykh poverkhnostei, IL, M., 1960

[5] Chueshev V. V., Geometricheskaya teoriya funktsii na kompaktnoi rimanovoi poverkhnosti, Kemerovo, 2005

[6] Chueshev V. V., Multiplikativnye funktsii i differentsialy Prima na peremennoi kompaktnoi rimanovoi poverkhnosti, Ch. 2, Kemerovo, 2003 | Zbl

[7] Gunning R. C., “On the Period Classes of Prym Differentials”, J. Reine Angew. Math., 319 (1980), 153–171 | MR | Zbl

[8] Farkas H. M., Kra I., Riemann Surfaces, Grad. Texts in Math., 71, Springer-Verlag, N.Y., 1992 | DOI | MR | Zbl

[9] Earle C. J., “Families of Riemann Surfaces and Jacobi Varieties”, Annals of Math., 107 (1978), 255–286 | DOI | MR | Zbl