On harmonic tensors on three-dimensional Lie groups with left-invariant Lorentz metric
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 1, pp. 29-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper studies three-dimensional Lie groups with left-invariant Lorentz metric and almost harmonic (i.e., having curl and divergence zero) Schouten–Weyl tensor. Moreover, by using the convolution of the Schouten-Weyl tensor in the direction of any vector, we define an antisymmetric $2$-tensor and study the structure of the three-dimensional Lie groups and algebras with left-invariant Lorentz metric for which this tensor is harmonic.
Keywords: Lie groups and algebras, left-invariant Lorentz metrics, harmonic tensor
Mots-clés : Schouten–Weyl tensor.
@article{VNGU_2012_12_1_a3,
     author = {O. P. Gladunova and E. D. Rodionov and V. V. Slavskii},
     title = {On harmonic tensors on three-dimensional {Lie} groups with left-invariant {Lorentz} metric},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {29--73},
     year = {2012},
     volume = {12},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2012_12_1_a3/}
}
TY  - JOUR
AU  - O. P. Gladunova
AU  - E. D. Rodionov
AU  - V. V. Slavskii
TI  - On harmonic tensors on three-dimensional Lie groups with left-invariant Lorentz metric
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2012
SP  - 29
EP  - 73
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2012_12_1_a3/
LA  - ru
ID  - VNGU_2012_12_1_a3
ER  - 
%0 Journal Article
%A O. P. Gladunova
%A E. D. Rodionov
%A V. V. Slavskii
%T On harmonic tensors on three-dimensional Lie groups with left-invariant Lorentz metric
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2012
%P 29-73
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2012_12_1_a3/
%G ru
%F VNGU_2012_12_1_a3
O. P. Gladunova; E. D. Rodionov; V. V. Slavskii. On harmonic tensors on three-dimensional Lie groups with left-invariant Lorentz metric. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 1, pp. 29-73. http://geodesic.mathdoc.fr/item/VNGU_2012_12_1_a3/

[1] Besse A., Mnogoobraziya Einshteina, V 2 t., Per. s angl., v. 1–2, Mir, M., 1990 | MR | Zbl

[2] Rodionov E. D., Slavskii V. V., Chibrikova L. N., “Levoinvariantnye lorentsevy metriki na 3-mernykh gruppakh Li s nulevym kvadratom dliny tenzora Skhoutena–Veilya”, Vestn. BGPU. Seriya: Estestvennye i tochnye nauki, 2004, no. 4, 53–60

[3] Milnor J., “Curvature of Left Invariant Metric on Lie Groups”, Adv. in Mathematics, 21 (1976), 293–329 | DOI | MR | Zbl

[4] Gladunova O. P., Rodionov E. D., Slavskii V. V., “O garmonicheskikh tenzorakh na trekhmernykh gruppakh Li s levoinvariantnoi rimanovoi metrikoi”, DAN. Seriya: Matematika, 419:6 (2008), 735–738 | MR | Zbl

[5] Balaschenko V. V., Gladunova O. P., Rodionov E. D., Slavskii V. V., “Levoinvariantnye rimanovy metriki s garmonicheskoi svertkoi tenzora Skhoutena–Veilya na trekhmernykh gruppakh Li”, Vestn. BGPU. Ceriya: Estestvennye i tochnye nauki, 2007, no. 7, 5–13

[6] Gladunova O. P., Rodionov E. D., Slavskii V. V., “Levoinvariantnye lorentsevy metriki s garmonicheskoi svertkoi tenzora Skhoutena–Veilya na trekhmernykh gruppakh Li”, Vestn. BGPU. Ceriya: Estestvennye i tochnye nauki, 2007, no. 7, 45–69

[7] Yano K., Bokhner S., Krivizna i chisla Betti, IL, M., 1957 | MR

[8] Chibrikova L. N., Primenenie paketov analiticheskikh vychislenii k resheniyu zadach odnorodnoi (psevdo)rimanovoi geometrii, Dis. $\dots$ kand. fiz.-mat. nauk, Barnaul, 2005