Mots-clés : Möbius mapping, coefficient of quasiconformality.
@article{VNGU_2012_12_1_a2,
author = {V. V. Aseev and T. A. Kergilova},
title = {Anharmonic ratio and the minimal criteria for {M\"obius} property},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {14--28},
year = {2012},
volume = {12},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2012_12_1_a2/}
}
TY - JOUR AU - V. V. Aseev AU - T. A. Kergilova TI - Anharmonic ratio and the minimal criteria for Möbius property JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2012 SP - 14 EP - 28 VL - 12 IS - 1 UR - http://geodesic.mathdoc.fr/item/VNGU_2012_12_1_a2/ LA - ru ID - VNGU_2012_12_1_a2 ER -
V. V. Aseev; T. A. Kergilova. Anharmonic ratio and the minimal criteria for Möbius property. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 1, pp. 14-28. http://geodesic.mathdoc.fr/item/VNGU_2012_12_1_a2/
[1] Haruki H., Rassias T. M., “A New Invariant Characteristic Property of Möbius Transformations from Standpoint of Conformal Mapping”, J. Math. Anal. Appl., 181 (1994), 320–327 | DOI | MR | Zbl
[2] Haruki H., Rassias T. M., “A New Characterictic of Möbius Transformations by Use of Apollonius Points of Triangles”, J. Math. Anal. Appl., 197 (1996), 14–22 | DOI | MR | Zbl
[3] Kobayashi O., “Apollonius Points and Anharmonic Ratios”, Tokyo Math. J., 30:1 (2007), 117–119 | DOI | MR | Zbl
[4] Aseev V., Kergilova T., “On Transformations that Preserve Fixed Anharmonic Ratio”, Tokyo J. Math., 33:2 (2010), 365–371 | DOI | MR | Zbl
[5] Kergilova T. A., “Mëbiusovost in'ektivnykh, izmerimykh po Borelyu otobrazhenii, sokhranyayuschikh fiksirovannoe angarmonicheskoe otnoshenie s tochnostyu do kompleksnogo sopryazheniya”, Vestn. Novosib. gos. un-ta. Seriya: Matematika, mekhanika, informatika, 10:4 (2010), 68–81 | Zbl
[6] Cieśliński J., “The Cross Ratio and Clifford Algebras”, Adv. in Clifford algebras, 7:2 (1997), 133–139 | DOI | MR | Zbl
[7] Berdon A., Geometriya diskretnykh grupp, Nauka, M., 1986 | MR
[8] Lelon-Ferran Zh., Osnovaniya geometrii, Mir, M., 1989 | MR
[9] Carathéodory C., “The Most General Transformations of Plane Regions which Transform Circles into Circles”, Bull. Amer. Math. Soc., 43 (1937), 537–579 | MR
[10] Frolkina O. D., “Affinnost otobrazhenii, sokhranyayuschikh ugol”, Vestn. Mosk. gos. un-ta. Ser. 1: Mat., mekh., 2002, no. 2, 61–63 | MR
[11] Hertrich-Jeronim U., Hoffman T., Pinkall U., A Discrete Version of the Darboux Transform for Isothermic Surfaces, SfB288 preprint No 239, Berlin, 1996
[12] Bobenko A., Pinkall U., “Discrete Surfaces with Constant Negative Gaussian Curvature and the Hirota Equation”, J. Diff. Geom., 43 (1996), 527–611 | MR | Zbl
[13] Aseev V. V., Sychev A. V., Tetenov A. V., “Mëbiusovo invariantnye metriki i obobschennye ugly v ptolemeevykh prostranstvakh”, Sib. mat. zhurn., 46:2 (2005), 243–263 | MR | Zbl
[14] Matematicheskaya entsiklopediya, v. 1, Izd-vo “Sovetskaya entsiklopediya”, M., 1977
[15] Atsel Ya., Dombr Zh., Funktsionalnye uravneniya s neskolkimi peremennymi, Per. s angl., Fizmatlit, M., 2003
[16] Aseev V. V., “Uslovie mëbiusovykh seredin kak priznak kvazikonformnosti i kvazimëbiusovosti”, Sib. mat. zhurn., 53:1 (2012), 38–58 | MR | Zbl