Anharmonic ratio and the minimal criteria for Möbius property
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 1, pp. 14-28
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give some criteria for Möbius property of a homeomorphism of domains in $\bar R^n$ which preserves fixed anharmonic ratio $\lambda\neq0,1,\infty$. For the case of even-dimensional space as well as for the case of real $\lambda$ the requirement of a map to be homeomorphism in the theorem can be replaced by injectivity and Borel measurability. For a homeomorphism which slightly changes fixed cross-ratio we get the upper estimates for it's coefficient of quasiconformality.
Keywords: anharmonic ratio, geometric criteria of Möbius property, quasiconformal mapping
Mots-clés : Möbius mapping, coefficient of quasiconformality.
@article{VNGU_2012_12_1_a2,
     author = {V. V. Aseev and T. A. Kergilova},
     title = {Anharmonic ratio and the minimal criteria for {M\"obius} property},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {14--28},
     year = {2012},
     volume = {12},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2012_12_1_a2/}
}
TY  - JOUR
AU  - V. V. Aseev
AU  - T. A. Kergilova
TI  - Anharmonic ratio and the minimal criteria for Möbius property
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2012
SP  - 14
EP  - 28
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2012_12_1_a2/
LA  - ru
ID  - VNGU_2012_12_1_a2
ER  - 
%0 Journal Article
%A V. V. Aseev
%A T. A. Kergilova
%T Anharmonic ratio and the minimal criteria for Möbius property
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2012
%P 14-28
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2012_12_1_a2/
%G ru
%F VNGU_2012_12_1_a2
V. V. Aseev; T. A. Kergilova. Anharmonic ratio and the minimal criteria for Möbius property. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 12 (2012) no. 1, pp. 14-28. http://geodesic.mathdoc.fr/item/VNGU_2012_12_1_a2/

[1] Haruki H., Rassias T. M., “A New Invariant Characteristic Property of Möbius Transformations from Standpoint of Conformal Mapping”, J. Math. Anal. Appl., 181 (1994), 320–327 | DOI | MR | Zbl

[2] Haruki H., Rassias T. M., “A New Characterictic of Möbius Transformations by Use of Apollonius Points of Triangles”, J. Math. Anal. Appl., 197 (1996), 14–22 | DOI | MR | Zbl

[3] Kobayashi O., “Apollonius Points and Anharmonic Ratios”, Tokyo Math. J., 30:1 (2007), 117–119 | DOI | MR | Zbl

[4] Aseev V., Kergilova T., “On Transformations that Preserve Fixed Anharmonic Ratio”, Tokyo J. Math., 33:2 (2010), 365–371 | DOI | MR | Zbl

[5] Kergilova T. A., “Mëbiusovost in'ektivnykh, izmerimykh po Borelyu otobrazhenii, sokhranyayuschikh fiksirovannoe angarmonicheskoe otnoshenie s tochnostyu do kompleksnogo sopryazheniya”, Vestn. Novosib. gos. un-ta. Seriya: Matematika, mekhanika, informatika, 10:4 (2010), 68–81 | Zbl

[6] Cieśliński J., “The Cross Ratio and Clifford Algebras”, Adv. in Clifford algebras, 7:2 (1997), 133–139 | DOI | MR | Zbl

[7] Berdon A., Geometriya diskretnykh grupp, Nauka, M., 1986 | MR

[8] Lelon-Ferran Zh., Osnovaniya geometrii, Mir, M., 1989 | MR

[9] Carathéodory C., “The Most General Transformations of Plane Regions which Transform Circles into Circles”, Bull. Amer. Math. Soc., 43 (1937), 537–579 | MR

[10] Frolkina O. D., “Affinnost otobrazhenii, sokhranyayuschikh ugol”, Vestn. Mosk. gos. un-ta. Ser. 1: Mat., mekh., 2002, no. 2, 61–63 | MR

[11] Hertrich-Jeronim U., Hoffman T., Pinkall U., A Discrete Version of the Darboux Transform for Isothermic Surfaces, SfB288 preprint No 239, Berlin, 1996

[12] Bobenko A., Pinkall U., “Discrete Surfaces with Constant Negative Gaussian Curvature and the Hirota Equation”, J. Diff. Geom., 43 (1996), 527–611 | MR | Zbl

[13] Aseev V. V., Sychev A. V., Tetenov A. V., “Mëbiusovo invariantnye metriki i obobschennye ugly v ptolemeevykh prostranstvakh”, Sib. mat. zhurn., 46:2 (2005), 243–263 | MR | Zbl

[14] Matematicheskaya entsiklopediya, v. 1, Izd-vo “Sovetskaya entsiklopediya”, M., 1977

[15] Atsel Ya., Dombr Zh., Funktsionalnye uravneniya s neskolkimi peremennymi, Per. s angl., Fizmatlit, M., 2003

[16] Aseev V. V., “Uslovie mëbiusovykh seredin kak priznak kvazikonformnosti i kvazimëbiusovosti”, Sib. mat. zhurn., 53:1 (2012), 38–58 | MR | Zbl