On the Global Solvability of the Two-Dimensional Through-Flow Problem for the Euler Equations with Unbounded Vorticity at the Entrance
    
    
  
  
  
      
      
      
        
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 4, pp. 69-77
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the global solvability of the two-dimensional through-flow problem for an ideal incompressible fluid with restrictions for the smoothness of the input data and solution (especially, for the vorticity) as weak as possible. The normal component of the velocity is prescribed on the whole boundary of the flow domain and the vorticity is prescribed at the entrance. It is shown that the global existence theorem can be proved in the class $\{{\rm rot}\,\boldsymbol{u} \in L_{\alpha}\}$ as $\alpha>4/3$, using the regularization of the input data and compactness arguments.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
Euler equations, existence of solutions
Keywords: ideal incompressible fluid, nonstationary flows, nonsmooth data, through-flow problem.
                    
                  
                
                
                Keywords: ideal incompressible fluid, nonstationary flows, nonsmooth data, through-flow problem.
@article{VNGU_2011_11_4_a6,
     author = {A. E. Mamontov and M. I. Uvarovskaya},
     title = {On the {Global} {Solvability} of the {Two-Dimensional} {Through-Flow} {Problem} for the {Euler} {Equations} with {Unbounded} {Vorticity} at the {Entrance}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {69--77},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a6/}
}
                      
                      
                    TY - JOUR AU - A. E. Mamontov AU - M. I. Uvarovskaya TI - On the Global Solvability of the Two-Dimensional Through-Flow Problem for the Euler Equations with Unbounded Vorticity at the Entrance JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2011 SP - 69 EP - 77 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a6/ LA - ru ID - VNGU_2011_11_4_a6 ER -
%0 Journal Article %A A. E. Mamontov %A M. I. Uvarovskaya %T On the Global Solvability of the Two-Dimensional Through-Flow Problem for the Euler Equations with Unbounded Vorticity at the Entrance %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2011 %P 69-77 %V 11 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a6/ %G ru %F VNGU_2011_11_4_a6
A. E. Mamontov; M. I. Uvarovskaya. On the Global Solvability of the Two-Dimensional Through-Flow Problem for the Euler Equations with Unbounded Vorticity at the Entrance. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 4, pp. 69-77. http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a6/
