Mots-clés : convergence.
@article{VNGU_2011_11_4_a4,
author = {N. P. Lazarev},
title = {Extreme {Crack} {Shapes} in a {Plate} {Timoshenko} {Model}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {49--62},
year = {2011},
volume = {11},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a4/}
}
N. P. Lazarev. Extreme Crack Shapes in a Plate Timoshenko Model. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 4, pp. 49-62. http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a4/
[1] Volmir A. S., Nelineinaya dinamika plastin i obolochek, Nauka, M., 1972 | MR
[2] Parton V. Z., Morozov E. M., Mekhanika uprugo-plasticheskogo razrusheniya, Nauka, M., 1974
[3] Cherepanov G. P., Mekhanika khrupkogo razrusheniya, Nauka, M., 1974 | Zbl
[4] Rabotnov Yu. I., Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1988 | Zbl
[5] Slepyan L. I., Mekhanika treschin, Sudostroenie, L., 1981 | Zbl
[6] Levin V. A., Morozov E. M., Matvienko Yu. G., Izbrannye nelineinye zadachi mekhaniki razrusheniya, Fizmatlit, M., 2004 | Zbl
[7] Morozov N. F., Matematicheskie voprosy teorii treschin, Nauka, M., 1984 | MR
[8] Khludnev A. M., Sokolowski J., Modelling and Control in Solid Mechanics, Birkhauser Verlag, Basel–Boston–Berlin, 1997 | MR | Zbl
[9] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000
[10] Rudoi E. M., “Asimptotika funktsionala energii dlya smeshannoi kraevoi zadachi chetvertogo poryadka v oblasti s razrezom”, Sib. mat. zhurn., 50:2 (2009), 430–445 | MR
[11] Lazarev N. P., “Differentsirovanie funktsionala energii v zadache o ravnovesii plastiny, soderzhaschei naklonnuyu treschinu”, Vestn. Novosib. gos. un-ta. Seriya: Matematika, mekhanika, informatika, 3:2 (2003), 62–73 | MR | Zbl
[12] Neustroeva N. V., “Odnostoronnii kontakt uprugikh plastin s zhestkim vklyucheniem”, Vestn. Novosib. gos. un-ta. Seriya: Matematika, mekhanika, informatika, 9:4 (2009), 51–64 | Zbl
[13] Khludnev A. M., “Ob odnostoronnem kontakte dvukh plastin, raspolozhennykh pod uglom drug k drugu”, PMTF, 49:4 (2008), 42–58 | MR
[14] Lazarev N. P., “Iteratsionnyi metod shtrafa dlya nelineinoi zadachi o ravnovesii plastiny Timoshenko, soderzhaschei treschinu”, Sib. zhurn. vychisl. mat., 14:4 (2011), 381–392 | MR
[15] Nazarov S. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei, v. 1, Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002 | Zbl
[16] Amstoy M., Leblond J. B., “Crack Paths in Plane Situations. II: Detailed Form of the Expansion of the Stress Intensity Factors”, Int. Solids J. Structures, 29:2 (1992), 465–501 | DOI | MR
[17] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[18] Movchan A. B., Movchan N. V., Mathematical Modelling of Solids with Nonregular Boundaries, CRC Mathematical Modelling Series, Boca Raton, N.Y.–L.–Tokyo, 1995 | MR
[19] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl