Extreme Crack Shapes in a Plate Timoshenko Model
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 4, pp. 49-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider equilibrium problem for Timoshenko-type plate. The problem is formulated as variational one. The plate is assumed to have a vertical crack with a variable shape. The nonpenetration condition imposed on crack faces is formulated in the form of inequality. An extreme shape of the crack is sought among all admissible cracks with fixed ends. We prove that functional, depending on crack and describing deformation has extreme cracks. We establish weakly convergence of solutions depending on parameter, which describing the crack shape. Furthermore, if functions of external forces is Lipschitz continuous, we prove prove that the solutions converge strongly.
Keywords: crack, Timoshenko-type plate, variational inequality
Mots-clés : convergence.
@article{VNGU_2011_11_4_a4,
     author = {N. P. Lazarev},
     title = {Extreme {Crack} {Shapes} in a {Plate} {Timoshenko} {Model}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {49--62},
     year = {2011},
     volume = {11},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a4/}
}
TY  - JOUR
AU  - N. P. Lazarev
TI  - Extreme Crack Shapes in a Plate Timoshenko Model
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2011
SP  - 49
EP  - 62
VL  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a4/
LA  - ru
ID  - VNGU_2011_11_4_a4
ER  - 
%0 Journal Article
%A N. P. Lazarev
%T Extreme Crack Shapes in a Plate Timoshenko Model
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2011
%P 49-62
%V 11
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a4/
%G ru
%F VNGU_2011_11_4_a4
N. P. Lazarev. Extreme Crack Shapes in a Plate Timoshenko Model. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 4, pp. 49-62. http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a4/

[1] Volmir A. S., Nelineinaya dinamika plastin i obolochek, Nauka, M., 1972 | MR

[2] Parton V. Z., Morozov E. M., Mekhanika uprugo-plasticheskogo razrusheniya, Nauka, M., 1974

[3] Cherepanov G. P., Mekhanika khrupkogo razrusheniya, Nauka, M., 1974 | Zbl

[4] Rabotnov Yu. I., Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1988 | Zbl

[5] Slepyan L. I., Mekhanika treschin, Sudostroenie, L., 1981 | Zbl

[6] Levin V. A., Morozov E. M., Matvienko Yu. G., Izbrannye nelineinye zadachi mekhaniki razrusheniya, Fizmatlit, M., 2004 | Zbl

[7] Morozov N. F., Matematicheskie voprosy teorii treschin, Nauka, M., 1984 | MR

[8] Khludnev A. M., Sokolowski J., Modelling and Control in Solid Mechanics, Birkhauser Verlag, Basel–Boston–Berlin, 1997 | MR | Zbl

[9] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000

[10] Rudoi E. M., “Asimptotika funktsionala energii dlya smeshannoi kraevoi zadachi chetvertogo poryadka v oblasti s razrezom”, Sib. mat. zhurn., 50:2 (2009), 430–445 | MR

[11] Lazarev N. P., “Differentsirovanie funktsionala energii v zadache o ravnovesii plastiny, soderzhaschei naklonnuyu treschinu”, Vestn. Novosib. gos. un-ta. Seriya: Matematika, mekhanika, informatika, 3:2 (2003), 62–73 | MR | Zbl

[12] Neustroeva N. V., “Odnostoronnii kontakt uprugikh plastin s zhestkim vklyucheniem”, Vestn. Novosib. gos. un-ta. Seriya: Matematika, mekhanika, informatika, 9:4 (2009), 51–64 | Zbl

[13] Khludnev A. M., “Ob odnostoronnem kontakte dvukh plastin, raspolozhennykh pod uglom drug k drugu”, PMTF, 49:4 (2008), 42–58 | MR

[14] Lazarev N. P., “Iteratsionnyi metod shtrafa dlya nelineinoi zadachi o ravnovesii plastiny Timoshenko, soderzhaschei treschinu”, Sib. zhurn. vychisl. mat., 14:4 (2011), 381–392 | MR

[15] Nazarov S. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei, v. 1, Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002 | Zbl

[16] Amstoy M., Leblond J. B., “Crack Paths in Plane Situations. II: Detailed Form of the Expansion of the Stress Intensity Factors”, Int. Solids J. Structures, 29:2 (1992), 465–501 | DOI | MR

[17] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[18] Movchan A. B., Movchan N. V., Mathematical Modelling of Solids with Nonregular Boundaries, CRC Mathematical Modelling Series, Boca Raton, N.Y.–L.–Tokyo, 1995 | MR

[19] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl