$cc$-Homogeneous Cone Condition and $cc$-Balls on Heizenberg Groups
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 4, pp. 8-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We studied properties of extremals of variational problem about the shortest paths of Carnot–Carathéodory metric (the $cc$-shortest paths) on Heizenberg groups. Using the establishing results we proved that $cc$-balls are satisfying the $cc$-homogeneous cone property.
Keywords: extremals, shortest path, Pontryagin maximum principle, Heizenberg groups.
Mots-clés : Carnot–Carathéodory metric
@article{VNGU_2011_11_4_a1,
     author = {A. V. Belykh and A. V. Greshnov},
     title = {$cc${-Homogeneous} {Cone} {Condition} and $cc${-Balls} on {Heizenberg} {Groups}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {8--20},
     year = {2011},
     volume = {11},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a1/}
}
TY  - JOUR
AU  - A. V. Belykh
AU  - A. V. Greshnov
TI  - $cc$-Homogeneous Cone Condition and $cc$-Balls on Heizenberg Groups
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2011
SP  - 8
EP  - 20
VL  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a1/
LA  - ru
ID  - VNGU_2011_11_4_a1
ER  - 
%0 Journal Article
%A A. V. Belykh
%A A. V. Greshnov
%T $cc$-Homogeneous Cone Condition and $cc$-Balls on Heizenberg Groups
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2011
%P 8-20
%V 11
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a1/
%G ru
%F VNGU_2011_11_4_a1
A. V. Belykh; A. V. Greshnov. $cc$-Homogeneous Cone Condition and $cc$-Balls on Heizenberg Groups. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 4, pp. 8-20. http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a1/

[1] Mazya V. G., Prostranstva Soboleva, Izd-vo Leningr. un-ta, L., 1985 | MR

[2] Jerison D., Kenig C., “Boundary Behavior of Harmonic Functions in Non-Tangentially Accessible Domain”, Adv. Math., 47:1 (1982), 80–147 | DOI | MR

[3] Capogna L., Garofalo N., “Non Tangentially Accassible Domains for Carnot–Caratheodory Metrics and a Fatou Type Theorem”, C. R. Acad. Sci. Paris. Sér. I Math., 12:321 (1995), 1565–1570 | MR | Zbl

[4] Capogna L., Garofalo N., “Boundary Behavior of Non-Negative Solutions of Subelliptic Equations in $NTA$-Domains for Carnot–Caratheodory Metrics”, Fourier Anal. Appl., 4:4 (1998), 403–432 | DOI | MR | Zbl

[5] Gromov M., “Carnot–Caratheodory Spaces Seen from Within”, Sub-Reimannian Geometry, Birkhäuser, Basel, 1996, 79–323 | DOI | MR | Zbl

[6] Pansu P., “Métriques de Carnot–Carathéodory et quasiisométries des espacies symétriques de rang un”, Annals of Math., 129 (1989), 1–60 | DOI | MR | Zbl

[7] Bonfiglioli A., Lanconelli E., Uguzzoni F., Stratified Lie Groups and Potential Theory for their Sub-Laplacian, Springer-Verlag, Berlin–Heidelberg, 2007 | MR

[8] Koráni A., Reimann H. M., “Foundation for the Theory of Quasiconformal Mappings on the Heisenberg Groups”, Adv. Math., 86:111 (1995), 1–87 | DOI | MR

[9] Rashevskii P. K., “O soedinimosti lyubykh dvukh tochek vpolne negolonomnogo prostranstva dopustimoi liniei”, Uchen. zap. Mosk. gos. ped. in-ta. im. K. Libknekhta. Ser. fiz.-mat., 3:2 (1938), 83–94

[10] Chow W. L., “Über Systeme von Linearen Partiallen Differentialgleichungen erster Ordnung”, Math. Ann., 117 (1939), 98–105 | MR

[11] Romanovskii N. N., “Integralnye predstavleniya i teoremy vlozheniya dlya funktsii, zadannykh na gruppakh Geizenberga $\Bbb H^n$”, Dokl. RAN, 382:4 (2002), 456–459 | MR | Zbl

[12] Romanovskii N. N., “Integralnye predstavleniya i teoremy vlozheniya dlya funktsii, zadannykh na gruppakh Geizenberga $\Bbb H^n$”, Algebra i analiz, 16:2 (2004), 82–119 | MR

[13] Vodopyanov S. K., Greshnov A. V., “O prodolzhenii funktsii ogranichennoi srednei ostsillyatsii na prostranstvakh odnorodnogo tipa s vnutrennei metrikoi”, Sib. mat. zhurn., 36:5 (1995), 1015–1048 | MR

[14] Berestovskii V. N., “Geodezicheskie negolonomnykh levoinvariantnykh vnutrennikh metrik na gruppe Geizenberga i izoperimetriksy ploskosti Minkovskogo”, Sib. mat. zhurn., 35:1 (1994), 3–11 | MR

[15] Capogna L., Danielli D., Pauls S. D., Tyson J. T., An Introduction to the Heizenberg Group and the Sub-Riemannian Isoperimetric Problem, Progress in Mathematics, 259, 2007 | MR | Zbl

[16] Berestovskii V. N., Zubareva I. A., “Formy sfer spetsialnykh negolonomnykh levoinvariantnykh vnutrennikh metrik na nekotorykh gruppakh Li”, Sib. mat. zhurn., 42:4 (2001), 731–748 | MR

[17] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969