Undecidability of Elementary Theories of Rogers Semilattices on Limit Levels of Hyperarithmetical Hierarchy
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 4, pp. 3-7 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Proved that elementary theory of any non-trivial Rogers semilattice in hyperarithmetical hierarchy is undecidable.
Keywords: numbering, Rogers semilattice, hyperarithmetical hierarchy, minimal elements, minimal covers.
@article{VNGU_2011_11_4_a0,
     author = {N. A. Baklanova},
     title = {Undecidability of {Elementary} {Theories} of {Rogers} {Semilattices} on {Limit} {Levels} of {Hyperarithmetical} {Hierarchy}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {3--7},
     year = {2011},
     volume = {11},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a0/}
}
TY  - JOUR
AU  - N. A. Baklanova
TI  - Undecidability of Elementary Theories of Rogers Semilattices on Limit Levels of Hyperarithmetical Hierarchy
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2011
SP  - 3
EP  - 7
VL  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a0/
LA  - ru
ID  - VNGU_2011_11_4_a0
ER  - 
%0 Journal Article
%A N. A. Baklanova
%T Undecidability of Elementary Theories of Rogers Semilattices on Limit Levels of Hyperarithmetical Hierarchy
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2011
%P 3-7
%V 11
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a0/
%G ru
%F VNGU_2011_11_4_a0
N. A. Baklanova. Undecidability of Elementary Theories of Rogers Semilattices on Limit Levels of Hyperarithmetical Hierarchy. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 4, pp. 3-7. http://geodesic.mathdoc.fr/item/VNGU_2011_11_4_a0/

[1] Podzorov S. Yu., “Nachalnye segmenty v polureshetkakh Rodzhersa $\Sigma_{n}^{0}$-vychislimykh numeratsii”, Algebra i logika, 42:2 (2003), 211–226 | MR | Zbl

[2] Badaev S., Goncharov S., Podzorov S., Sorbi A., “Algebraic Properties of Rogers Semilattices of Arithmetical Numberings”, Computability and Models, eds. S. B. Cooper, S. S. Goncharov, Kluwer/Plenum Publishers, N.Y., 2003, 45–77 | DOI | MR

[3] Goncharov S. S., Sorbi A., “Obobschenno vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | MR | Zbl

[4] Badaev S. A., Goncharov S. S., “O polureshetkakh Rodzhersa semeistv arifmeticheskikh mnozhestv”, Algebra i logika, 40:5 (2001), 507–522 | MR | Zbl

[5] Rodzhers Kh., Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR

[6] Ash C. J., Knight J. F., Computable Structures and the Hyperarithmetical Hierarchy, Elsevier, Amsterdam, 2000