Mots-clés : open morphism, $di$-homotopy
@article{VNGU_2011_11_3_a8,
author = {E. S. Oshevskaya},
title = {Equivalence of {Categories} of {Precubical} {Sets} and {Transitional} {Chu-Spaces,} {Preserving} the {Property} of {Morphisms} to be {Open}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {123--145},
year = {2011},
volume = {11},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a8/}
}
TY - JOUR AU - E. S. Oshevskaya TI - Equivalence of Categories of Precubical Sets and Transitional Chu-Spaces, Preserving the Property of Morphisms to be Open JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2011 SP - 123 EP - 145 VL - 11 IS - 3 UR - http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a8/ LA - ru ID - VNGU_2011_11_3_a8 ER -
%0 Journal Article %A E. S. Oshevskaya %T Equivalence of Categories of Precubical Sets and Transitional Chu-Spaces, Preserving the Property of Morphisms to be Open %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2011 %P 123-145 %V 11 %N 3 %U http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a8/ %G ru %F VNGU_2011_11_3_a8
E. S. Oshevskaya. Equivalence of Categories of Precubical Sets and Transitional Chu-Spaces, Preserving the Property of Morphisms to be Open. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 3, pp. 123-145. http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a8/
[1] Grandis M., Directed Algebraic Topology, New Mathematical Monographs, Cambridge University Press, Cambridge, 2009 | MR | Zbl
[2] Fajstrup L., “Dicovering spaces”, Homology, Homotopy, and Applications, 5:2 (2003), 1–17 | MR | Zbl
[3] van Glabbeek R. J., Bisimulation Semantics for Higher Dimensional Automata, http://theory.stanford.edu/r̃vg/hda
[4] Pratt V. R., “Modeling Concurrency with Geometry”, Proc. $18^\text{th}$ Annual ACM Symposium on Principles of Programming Languages (Orlando, 1991), 311–322
[5] van Glabbeek R. J., “On the Expressiveness of Higher Dimensional Automata”, Theoretical Computer Science, 356:3 (2006), 265–290 | DOI | MR | Zbl
[6] Fajstrup L., “Dihomotopy Classes of Dipaths in the Geometric Realization of a Cubical Set: From Discrete to Continuous and back again”, Proc. Dagstuhl Seminar on Spatial Representation: Discrete vs Continuous Computational Models (Schloss Dagstuhl, 2005)
[7] Goubault E., Jensen T. P., “Homology of Higher Dimensional Automata”, Lecture Notes in Computer Science, 630, 1992, 254–268 | DOI | MR
[8] Grandis M., “Directed Combinatorial Homology and Noncommutative Tori (The Breaking of Symmetries in Algebraic Topology)”, Mathematical Proceedings of the Cambridge Philosophical Society, 138, 2005, 233–262 | DOI | MR | Zbl
[9] Fahrenberg U., “Directed Homology”, Electrotic Notes in Theoretical Computer Science, 100 (2004) | MR
[10] Khusainov A. A., “O gruppakh gomologii polukubicheskikh mnozhestv”, Sib. mat. zhurnal, 1:49 (2008), 224–237 | MR | Zbl
[11] Skurikhin E. E., Sukhonos A. G., “Topologii Grotendika na prostranstvakh Chu”, Mat. trudy, 2:11 (2008), 159–186 | MR | Zbl
[12] Gupta V., Chu Spaces: A Model of Concurrency, PhD Thesis, Stanford University, Stanford, 1994 http://boole.stanford.edu/pub/gupthes.ps.gz
[13] van Glabbeek R. J., Plotkin G. D., “Configuration Structures”, Proc. $10^\text{th}$ Annual IEEE Symposium on Logic in Computer Science (Chicago, 2005), 199–209
[14] Joyal A., Moerdijk I., “A Completeness Theorem for Open Maps”, Annals of Pure and Applied Logic, 70 (1994), 51–86 | DOI | MR | Zbl
[15] Joyal A., Nielsen M., Winskel G., “Bisimulation from Open Maps”, Information and Computation, 127:2 (1996), 164–185 | DOI | MR | Zbl
[16] Oshevskaya E. S., “Open Maps Bisimulations for Higher Dimensional Automata Models”, Lecture Notes in Computer Science, 5699, 2009, 274–286 | DOI | Zbl
[17] Fahrenberg U., “A Category of Higher-Dimensional Automata”, Lecture Notes in Computer Science, 3441, 2005, 187–201 | DOI | MR | Zbl
[18] MacLane S., Categories for the Working Mathematician, Springer, N.Y., 1998 | MR
[19] Sassone V., Cattani G. L., “Higher-Dimensional Transition Systems”, Proc $11^\text{th}$ Annual IEEE Symposium on Logic in Computer Science (Los Alamitos, 1996), 55–62 | MR