Equivalence of Categories of Precubical Sets and Transitional Chu-Spaces, Preserving the Property of Morphisms to be Open
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 3, pp. 123-145 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The intention of the paper is to show the applicability of the directed algebraic topology to establish the close categorical relationships between geometrical models of concurrency — precubical sets and transitional Chu-spaces. In particular, we start with introducing categories of the models under consideration. Then, we construct and study the universal di-covering functor from the category of precubical sets to the category of simply di-connected counterpart of precubical sets. Finally, an equivalence of the categories of transitional Chu-spaces and simply di-connected precubical sets is established, preserving an important property of morphisms to be open.
Keywords: precubical sets, Chu-space, $di$-topology, equivalence of category.
Mots-clés : open morphism, $di$-homotopy
@article{VNGU_2011_11_3_a8,
     author = {E. S. Oshevskaya},
     title = {Equivalence of {Categories} of {Precubical} {Sets} and {Transitional} {Chu-Spaces,} {Preserving} the {Property} of {Morphisms} to be {Open}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {123--145},
     year = {2011},
     volume = {11},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a8/}
}
TY  - JOUR
AU  - E. S. Oshevskaya
TI  - Equivalence of Categories of Precubical Sets and Transitional Chu-Spaces, Preserving the Property of Morphisms to be Open
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2011
SP  - 123
EP  - 145
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a8/
LA  - ru
ID  - VNGU_2011_11_3_a8
ER  - 
%0 Journal Article
%A E. S. Oshevskaya
%T Equivalence of Categories of Precubical Sets and Transitional Chu-Spaces, Preserving the Property of Morphisms to be Open
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2011
%P 123-145
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a8/
%G ru
%F VNGU_2011_11_3_a8
E. S. Oshevskaya. Equivalence of Categories of Precubical Sets and Transitional Chu-Spaces, Preserving the Property of Morphisms to be Open. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 11 (2011) no. 3, pp. 123-145. http://geodesic.mathdoc.fr/item/VNGU_2011_11_3_a8/

[1] Grandis M., Directed Algebraic Topology, New Mathematical Monographs, Cambridge University Press, Cambridge, 2009 | MR | Zbl

[2] Fajstrup L., “Dicovering spaces”, Homology, Homotopy, and Applications, 5:2 (2003), 1–17 | MR | Zbl

[3] van Glabbeek R. J., Bisimulation Semantics for Higher Dimensional Automata, http://theory.stanford.edu/r̃vg/hda

[4] Pratt V. R., “Modeling Concurrency with Geometry”, Proc. $18^\text{th}$ Annual ACM Symposium on Principles of Programming Languages (Orlando, 1991), 311–322

[5] van Glabbeek R. J., “On the Expressiveness of Higher Dimensional Automata”, Theoretical Computer Science, 356:3 (2006), 265–290 | DOI | MR | Zbl

[6] Fajstrup L., “Dihomotopy Classes of Dipaths in the Geometric Realization of a Cubical Set: From Discrete to Continuous and back again”, Proc. Dagstuhl Seminar on Spatial Representation: Discrete vs Continuous Computational Models (Schloss Dagstuhl, 2005)

[7] Goubault E., Jensen T. P., “Homology of Higher Dimensional Automata”, Lecture Notes in Computer Science, 630, 1992, 254–268 | DOI | MR

[8] Grandis M., “Directed Combinatorial Homology and Noncommutative Tori (The Breaking of Symmetries in Algebraic Topology)”, Mathematical Proceedings of the Cambridge Philosophical Society, 138, 2005, 233–262 | DOI | MR | Zbl

[9] Fahrenberg U., “Directed Homology”, Electrotic Notes in Theoretical Computer Science, 100 (2004) | MR

[10] Khusainov A. A., “O gruppakh gomologii polukubicheskikh mnozhestv”, Sib. mat. zhurnal, 1:49 (2008), 224–237 | MR | Zbl

[11] Skurikhin E. E., Sukhonos A. G., “Topologii Grotendika na prostranstvakh Chu”, Mat. trudy, 2:11 (2008), 159–186 | MR | Zbl

[12] Gupta V., Chu Spaces: A Model of Concurrency, PhD Thesis, Stanford University, Stanford, 1994 http://boole.stanford.edu/pub/gupthes.ps.gz

[13] van Glabbeek R. J., Plotkin G. D., “Configuration Structures”, Proc. $10^\text{th}$ Annual IEEE Symposium on Logic in Computer Science (Chicago, 2005), 199–209

[14] Joyal A., Moerdijk I., “A Completeness Theorem for Open Maps”, Annals of Pure and Applied Logic, 70 (1994), 51–86 | DOI | MR | Zbl

[15] Joyal A., Nielsen M., Winskel G., “Bisimulation from Open Maps”, Information and Computation, 127:2 (1996), 164–185 | DOI | MR | Zbl

[16] Oshevskaya E. S., “Open Maps Bisimulations for Higher Dimensional Automata Models”, Lecture Notes in Computer Science, 5699, 2009, 274–286 | DOI | Zbl

[17] Fahrenberg U., “A Category of Higher-Dimensional Automata”, Lecture Notes in Computer Science, 3441, 2005, 187–201 | DOI | MR | Zbl

[18] MacLane S., Categories for the Working Mathematician, Springer, N.Y., 1998 | MR

[19] Sassone V., Cattani G. L., “Higher-Dimensional Transition Systems”, Proc $11^\text{th}$ Annual IEEE Symposium on Logic in Computer Science (Los Alamitos, 1996), 55–62 | MR